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Focusing on:

hydrologic response as a key to understanding thermal, mechanical,
and chemical systems

New' BATS boreholes

BSOT-BL-0000c
B Run * 3

DerTH: 2.89- 832
Dare: 2/7/2019

New BATS core




3 |Why Focus on Brine in Salt?

Solubility, Dissolution Constant Rate Fluid Inclusions Migration (Soret Effec

» Water Sources in Salt
1. Disseminated clay (<5% clay; ~25% brin
2. Intragranular brine (fluid inclusions; 1-2% .
3. Intergranular brine (between crystals; ~0.1% ",

- Each Water Type:
» Respond differently to heat
« Different chemical / isotopic composition

Q: How do 3 Waters Contribute to Brine
Availability?

» How much brine is there?
» How does it get to excavatio




4 | Processes Coupled Through Porosity E

- Damage Creates a Flow System T s

Brine ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R Gas phase
; — 2

inclusions . (air and water)

,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,

 Porosity Evolves:
* Precipitation / dissolution —
* Mechanical damage / healing G R L ";,f,:.,,.,.,.:’j,f ,,,,,,,,,,, " soldpnase |
» Hydrofracture

Liquid phase

* Processes Depending on Porosity / agaonass
» Advection of liquid / gas
- Heat convection (free / forced) . |
* Reactive transport

* Depend Less on Porosity
 Heat conduction
 Mechanical deformation

X-Ray CT scan of core from BATS



5 ‘Damaged Zone Impacts on Test

Packer
Heater
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BATS borehole

Characterize EDZ while avoiding most damaged areas
* Horizontal borehole avoids layers in floor
* Inflatable packer isolates from near-drift vertical fractures

I I Em B



¢ |Hydrologic System as Mechanical Indicator / Driver

» Hydrologic Properties / Variables

* Huge gradient across EDZ
* [n-drift

* Low pressure
* High porosity & permeability
* Gas filled porosity

* Far-field
* High pressure
* Low porosity & permeability
* Brine filled porosity

* Thermal pressurization

» Thermal diffusivity = hydraulic diffusivity

Thermal-Hydrological Properites
and Variables

Liquid pressure 150 atm

10" Thermal
] pressurization

100%

—
Liquid saturation

Intrinsic permeability
10—22 mz

Temperature
0.1%
Porosity

oo EDZ -1 . Far-
Drift | EdZ field

Distance

<€
EDZ/EdZ eventually shrink



7 | Water as Energy Indicator / Redistributor

* Hot Waste Packages (> 1 kW) Boiling

* Hot = More brine available
* Liberate fluid inclusions
* Dry out hydrous minerals (e.g., gypsum)
* Dry out clay

* Establish a Heat Pipe? X/Conducﬂonon'v }m-drm heat

° Free COnVGCtIOn transportscenarios
* Requires high porosity
* Requires very hot source

Condensation
Region

: Convection

Salt dissolution
from condensation

Thermal Properites
and Variables

- Lowers peak temperature at waste e Temperature

. | 0.1% _

* Dry Out Near Field? ; | Porosity
* Dry salt is less corrosive Drift 0% Pz ——

Distance



Brine Availability Test in Salt (BATS)

salt using geophysical methods and direct liquid &

Monitoring brine distribution and chemistry from heated I
gas sampling I

Test |mplemented by Oct 2019, heating begins late |

New BATS core
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10" Borehole Arrays

.
B

T =Temp Only Holes

AE = Acouslic Emissions
SL = Seal

D =D20 + Tracer Source
E = ERT Electrodes

F = Fiber Optic {T and/or Strain) B

SM = Sampling
~ HP = Heater and Packer
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11 |Data Collection Summary
Heated Array

Two Arrays: Heated / Unheated A

Behind packer - B[ e O
> Circulate dry N, gas o |
> Quartz lamp heater (750 W)

- Borehole closure gage Gl

Samples / Analyses
> Analyze gas stream (natural / applied tracers and isotopic makeup)
> Collect liquid brine (natural chemistry and natural / applied tracers) ~ Cross-section central borehole

Pressure, Humidity

> Collect cores (X-ray CT and fluorescence at NETL) e

Gas inlet (routed near

pl
back)
Borehole Closure
Packer C;ntrali:er Gage

Geophysics
o 3x Electrical resistivity tomography (ERT) e
> 3x Acoustic emissions (AE) / ultrasonic travel-time tomography.. .

Controller ‘.'

o 2% Fiber optic distributed strain (DSS) / temperature (DTS) sensi

Pressure Sensors

Gas Inlet

AY
Radiative Heater Element

]

Satellite Observation Borehole



12 ‘Historic and Preliminary Data ., .. High-frequency gas composition
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13 \Why are These Data Useful?

Brine composition samples / H,O isotope data
> Change in brine types with temperature

Geophysics

> Map 4D evolution of saturation / porosity

Temperature Distribution
> More brine at high temp (inclusions + hydrous minerals)
o Thermal pressurization
o Salt dry-out near borehole

Gas Permeability and Borehole Closure
o THM evolution of salt during heating

Gas / Liquid Tracer Migration

o Advection / diffusion / reaction




14 | How to Interpret Data”

1. Thermal (T) response (i.e., conduction)
2. Two-phase Hydrologic (H) unheated response (i.e., diffusion)

3. Thermal-Hydrologic (TH) response (+ convection)
> Dry-out

4. TH-Mechanical (THM) response of salt
> Fiber-optic strain & borehole closure
> AE response of salt (damage = new permeability)

5. TH-Chemical (THC) response of salt

> Contribution of each brine type
> Prediction of precipitated phases

Do we need a Discrete Fracture Network? (Salt is “crystalline”
rock)
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