This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

ntegrating System State anc
Application Performance
Monitoring: Network Contention

Jim Brandt (SNL) presenting

CUG 2021

SAND

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2021-7996C

@EnNERcY ANISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

_ | Goal: Understanding Application Performance

* Assertions: |/0 Utilization
CPU Utilization

* Resource state (e.g., utilizations, faults/failures, contention,

performance limits) affects application performance. 3 ST AT

* The dynamic nature of system state over the time of an
applications execution makes effects on application

performance difficult to quantify. Informs

* Fusion of system and application state and performance
metrics can provide insights into application behaviors:

o Temporal association of application progress with changes in

Load Imbalance
system resource state

Unexpected Exit
° Location (e.g., spatial, temporal) of behavior of interest can be

expedited through examination of an application’s run time

progress Informs

o Quantify relationships between application performance and
degree of system resource contention Progress:

Time-per-timestep

Unified Framework for Continuous, Run Time, Fused
> ¥ System and Application Performance Monitoring and

Analysis
Data Flow Diagram
HPC System Analysis Cluster
time
Applications > Dashboard
dynamically and
irr93UlGrly injeCt App 1 App 2 Continuous Analysis onh \ —_— =
data into the Kokkos Kokkos dynamically populated i . ! :_:t 1 f 57
LDMS transport Streams Streams database pp Ferrormance ystem rFerrormance
LDMS continuously LDMS transport NVMe-based
database

and regularly
collects and
transports full LDMS samplers

system data

. | Enabling Application Data Injection:

LDMS - low-overhead data collection, transport, and storage
capability designed for continuous monitoring supporting
runtime analytics and feedback.

o LDMS transport is low-overhead (e.g., RDMA vs typical message
bus IP)

o System data collection is typically synchronous at regular (e.g.,
second or less) intervals

o Structured data format (i.e., metric set) designed to minimize data
movement

o Transport is typically pull based to minimize CPU interference, but
also supports push based for asynchronous structured data

GOAL: Leverage the efficient and secure LDMS transport to
support Application Data Injection

LDMS Streams — on demand publication of loosely formatted
information to subscribers

o Transport is push based and supports asynchronous event data
(e.g. scheduler and log data)

° Unstructured data
o Leverages all features of the LDMS transport (e.g., security, RDMA)

LDMS Background

ldmsd L1 aggregator pulls
from memory regions

/ “Xf LO samplers

<— Sampler plugins

ldmsd
Daemon publish API called from externally or by a plugin

pushes to l[dmsd which pushes to all subscribing plugins
and aggregators

I I Em B

s | Kokkos Performance Portability Layer: Background

Kokkos Runtime Code

Application Code

call kokkosp_start_parallel_for(..)

Kokkos::parallel_for(... , KOKKOS_LAMBDA(int i) {
<loop body>
3);

<execute loop body>

call kokkosp_end_parallel_for(..)

Call functions within a dynamically loaded Kokkos Tool

* Kernels and Teuchos timers within Trilinos are configured to dynamically load a Kokkos supplied
“connector”. This requires no recompilation for profile enabled code and can be used for any Kokkos
application (not just Trilinos, EMPIRE, etc.)

* Hook points already exist for kernels (parallel-for, reduce, scan), “regions” (arbitrary points in code which can
stack) and “sections” (arbitrary points in code which may overlap)

* Already have a good idea of what the valuable profiling information would be (doesn’t require user input)

« I Run time Injection of Application Data into the LDMS

Transport
Application Code

Kokkos Runtime Code

Kokkos::parallel_for(...,
KOKKOS_LAMBDA(int i) {
<loop body>

3);

call kokkosp_begin_parallel_for(..)
<execute loop body>

call kokkosp_end_parallel_for(..)

Kokkos Sampler controls the sampling rate.
When triggered, it signals for the Kokkos
Connector to publish data to LDMS.

Kokkos Sampler introduces the option to sample Kokkos-LDMS Connector
data using time-based or count-based criteria. T o LS S A

Kokkos

“Sampler”
Keeps statistics
and timing to
determine
publishing

LDMS Transport

Unified Framework for Continuous, Run Time, Fused
" System and Application Performance Monitoring and
Analysis

Data Flow Diagram

HPC System Analysis Cluster
time
> Dashboard

Applications \
dynamically and App 1 App 2 Continuous Analysis on I
irregularly inject Kokkos Kokkos dynamically populated
dCltCl into the LDMS database App Performance =@=System Performance
transport Streams Streams
LDMS continuously LDMS transport NVMe-based
and regularly database

collects and

transports full
system data LDMS samplers

. | Application and LDMS Configuration

* Voltrino (Cray XC40) 54 nodes

* Target recording ~1% of kernel execution events (e.g., one or

more instances of {kernel name, kernel executions count,
time}) Socket

* Provide reasonable representation of execution behavior while

having little instrumentation overhead (can dial in whatever %
desired)

* Format is currently JSON
* Investigating unpacking performance effects

Socket

* Store will eventually be a distributed database.

* Currently CSV
Recorded information per message:
rank,timestamp, job-1id, kokkos-perf-
data:time, kokkos-perf-data:type, kokkos-perf-
data:name, kokkos-perf-data:count

Socket

0,100907.012310,8290750,0.000003,0, "Kokkos::view: :initializat
ion [Kokkos::Random_Xorshift64::state]",?2
0,100907.012360,8290750,0.000008,0, "Kokkos::view::initializat
ion [Dualview: :modified_flags]",5
0,100907.012400,8290750,0.000014,0, "Kokkos::view: :initializat
ion [SurfcCollide:nsingle]", 4

o I Characterizing Impact of Network Traffic on Applications

Approach:

* Characterize application performance in the context of network congestion

* Utilize the GPCNeT application to create an environment with varying network interference on an
application

* Historically NO Network Hardware Performance Counters have been shown to provide strong correlations
between the “level of congestion” that an application is experiencing (e.g., stall to flit ratios, percent time
stalled) and the progress that it is making (e.g., number of kernel executions per second for a given phase).
There are weak correlations at best.

Challenge:

* Acquiring a tangible and realistic run time representation of network congestion that can be utilized to
gain understanding (quantify) of how it affects application performance for any given application and
input deck.

0 I Characterizing Impact of Network Traffic on Applications

Our current solution is to utilize ms level fidelity data to perform run time comparisons of:

* Approximate network congestion from statistically sampling latencies among an application’s
compute nodes utilizing ping-pong packets and/or Cray Aries latency counters.

* Approximate application progress using a statistical sampling of kernel calls

Fig. 1: Comparing application progress (blue)
with evolving latency (system state (orange))

1 1 Analysis and Visualization: Architecture

Grafana interface for analyzing and visualizing integrated
application and system data

Data can be directly queried from a database or have a
python module perform analyses alongside queries

o Allows for flexible development of visualizations as
analysis only happens during a query rather than over all
data

o Any user with appropriate permissions can add and change

(self,metrics):
; 505.COND_GE, self.start]]

where = where_,

; limit=self.mdp)

ta.tolist(), columns=metrics)

res.append_a Wi (df.co) , df.columns)
res.append_array((df.iloc[&]), , df.iloc[&])
return res

Client Machine

Web Browser

LDMS Data

Monitoring Server

Formatter
Modules

Grafana
Server

SosD5

505
Database

SosDB Python API

Query

DataFrame

2 I Conclusions

System and Application data fusion will provide unprecedented run time insight into
performance and resource utilization features

BUT there are challenges:

* Fidelity (are we correctly characterizing the resource) and completeness (do we have coverage
of connections in our sampling (e.g., is a sampling of 1% of connections sufficient?)) of latency
measurements

* Meaningful and useful congestion metrics
* Meaningful and useful application progress/performance metrics

* Application phases change (do we have enough data points in each phase to characterize the
application overall?)

* Application of these insights and capabilities to other shared resources
* Data format to support desired ingest rates

* Features of interest we expect to resolve are at 10s of ms to a few seconds (e.g., our
supported system state data rate)

