
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Integrating System State and
Application Performance
Monitoring: Network Contention
Impact

J i m B r a n d t (S N L) p r e s e n t i n g

 C U G 2 0 2 1

 S A N D

SAND2021-7996CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Goal: Understanding Application Performance

• Assertions:
• Resource state (e.g., utilizations, faults/failures, contention,

performance limits) affects application performance.
• The dynamic nature of system state over the time of an

applications execution makes effects on application
performance difficult to quantify.

• Fusion of system and application state and performance
metrics can provide insights into application behaviors:

◦ Temporal association of application progress with changes in
system resource state

◦ Location (e.g., spatial, temporal) of behavior of interest can be
expedited through examination of an application’s run time
progress

◦ Quantify relationships between application performance and
degree of system resource contention

2

Application Behavioral
Characteristics

Progress / Throughput
Load Imbalance
Unexpected Exit

…

Application Measurements
Progress:

Time-per-timestep
Number of kernel calls and
timings

…

System Measurements
I/O Utilization
CPU Utilization

Memory Utilization
Network Utilization

…

Informs

Informs

Unified Framework for Continuous, Run Time, Fused
System and Application Performance Monitoring and
Analysis

3

Data Flow Diagram

Analysis Cluster

NVMe-based
database

Long-term
data store

LDMS transport

KokkosKokkos

 Dashboard

HPC System

Continuous Analysis on
dynamically populated
database

Applications
dynamically and
irregularly inject
data into the
LDMS transport

LDMS continuously
and regularly
collects and
transports full
system data

time

LDMS samplers

1 2 3 4 5 6 7 8 9

App Performance System Performance

App 2App 1

StreamsStreams

Enabling Application Data Injection: LDMS Background
 LDMS - low-overhead data collection, transport, and storage
capability designed for continuous monitoring supporting
runtime analytics and feedback.

◦ LDMS transport is low-overhead (e.g., RDMA vs typical message
bus IP)

◦ System data collection is typically synchronous at regular (e.g.,
second or less) intervals

◦ Structured data format (i.e., metric set) designed to minimize data
movement

◦ Transport is typically pull based to minimize CPU interference, but
also supports push based for asynchronous structured data

GOAL: Leverage the efficient and secure LDMS transport to
support Application Data Injection

LDMS Streams – on demand publication of loosely formatted
information to subscribers

◦ Transport is push based and supports asynchronous event data
(e.g. scheduler and log data)

◦ Unstructured data
◦ Leverages all features of the LDMS transport (e.g., security, RDMA)

4

ldmsd L1 aggregator pulls
from memory regions
of L0 samplers

Sampler plugins

Daemon publish API called from externally or by a plugin
pushes to ldmsd which pushes to all subscribing plugins
and aggregators

ldmsd

Kokkos Performance Portability Layer: Background

• Kernels and Teuchos timers within Trilinos are configured to dynamically load a Kokkos supplied
“connector”. This requires no recompilation for profile enabled code and can be used for any Kokkos
application (not just Trilinos, EMPIRE, etc.)

• Hook points already exist for kernels (parallel-for, reduce, scan), “regions” (arbitrary points in code which can
stack) and “sections” (arbitrary points in code which may overlap)

• Already have a good idea of what the valuable profiling information would be (doesn’t require user input)

5

Call functions within a dynamically loaded Kokkos Tool

…
Kokkos::parallel_for(… , KOKKOS_LAMBDA(int i) {
<loop body>
});
…

…

call kokkosp_start_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)
..

Application Code Kokkos Runtime Code

Run time Injection of Application Data into the LDMS
Transport

6

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for(… ,
KOKKOS_LAMBDA(int i) {
<loop body>
});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)
..

Application Code Kokkos Runtime Code

Kokkos
“Sampler”

Keeps statistics
and timing to

determine
publishing• Kokkos Sampler controls the sampling rate.

When triggered, it signals for the Kokkos
Connector to publish data to LDMS.

• Kokkos Sampler introduces the option to sample
data using time-based or count-based criteria.

LDMS Transport

Unified Framework for Continuous, Run Time, Fused
System and Application Performance Monitoring and
Analysis

7

Data Flow Diagram

Analysis Cluster

NVMe-based
database

Long-term
data store

LDMS transport

KokkosKokkos

 Dashboard

HPC System

Continuous Analysis on
dynamically populated
database

Applications
dynamically and
irregularly inject
data into the LDMS
transport

LDMS continuously
and regularly
collects and
transports full
system data

time

LDMS samplers

1 2 3 4 5 6 7 8 9

App Performance System Performance

App 2App 1

StreamsStreams

Application and LDMS Configuration
• Voltrino (Cray XC40) 54 nodes
• Target recording ~1% of kernel execution events (e.g., one or

more instances of {kernel name, kernel executions count,
time})
• Provide reasonable representation of execution behavior while

having little instrumentation overhead (can dial in whatever %
desired)

• Format is currently JSON
• Investigating unpacking performance effects

• Store will eventually be a distributed database.
• Currently CSV

8

Recorded information per message:
rank,timestamp,job-id,kokkos-perf-
data:time,kokkos-perf-data:type,kokkos-perf-
data:name,kokkos-perf-data:count ​

0,100907.012310,8290750,0.000003,0,"Kokkos::View::initializat
ion [Kokkos::Random_XorShift64::state]",2
0,100907.012360,8290750,0.000008,0,"Kokkos::View::initializat
ion [DualView::modified_flags]",5
0,100907.012400,8290750,0.000014,0,"Kokkos::View::initializat
ion [SurfCollide:nsingle]",4

SocketSocket

Node

SocketSocket

Node
…

SocketSocket

Node

SocketSocket

Node
…

…

LDMS
Agg

LDMS
Agg

… Store

Characterizing Impact of Network Traffic on Applications

 Approach:

• Characterize application performance in the context of network congestion
• Utilize the GPCNeT application to create an environment with varying network interference on an

application
• Historically NO Network Hardware Performance Counters have been shown to provide strong correlations

between the “level of congestion” that an application is experiencing (e.g., stall to flit ratios, percent time
stalled) and the progress that it is making (e.g., number of kernel executions per second for a given phase).
There are weak correlations at best.

Challenge:

• Acquiring a tangible and realistic run time representation of network congestion that can be utilized to
gain understanding (quantify) of how it affects application performance for any given application and
input deck.

9

Characterizing Impact of Network Traffic on Applications

Our current solution is to utilize ms level fidelity data to perform run time comparisons of:

• Approximate network congestion from statistically sampling latencies among an application’s
compute nodes utilizing ping-pong packets and/or Cray Aries latency counters.

• Approximate application progress using a statistical sampling of kernel calls

10

1 2 3 4 5 6 7 8 9

Fig. 1: Comparing application progress (blue)
with evolving latency (system state (orange))

Analysis and Visualization: Architecture

 Grafana interface for analyzing and visualizing integrated
application and system data

 Data can be directly queried from a database or have a
python module perform analyses alongside queries

◦ Allows for flexible development of visualizations as
analysis only happens during a query rather than over all
data

◦ Any user with appropriate permissions can add and change
analytics and create their own queries/analyses

11

Conclusions

System and Application data fusion will provide unprecedented run time insight into
performance and resource utilization features

BUT there are challenges:
• Fidelity (are we correctly characterizing the resource) and completeness (do we have coverage

of connections in our sampling (e.g., is a sampling of 1% of connections sufficient?)) of latency
measurements

• Meaningful and useful congestion metrics
• Meaningful and useful application progress/performance metrics
• Application phases change (do we have enough data points in each phase to characterize the

application overall?)
• Application of these insights and capabilities to other shared resources
• Data format to support desired ingest rates
• Features of interest we expect to resolve are at 10s of ms to a few seconds (e.g., our

supported system state data rate)

12

