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Motivation: Mechanistic PV Performance and Degradation 
Modeling

Mechanistic understanding of 

photovoltaic array performance can 

decrease the Levelized Cost of 

Photovoltaic Energy via:

● Decreased Operation/Maintenance 

Costs

● Increased Energy Production

● Reduced Degradation

in the industrial and R&D sectors.
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I - initial cost
O - operational cost
M - maintenance cost
F - interest expenditure 
S - energy production
r - inflation and uncertainty
(1-d) - degradation term



Analytic ISC-VOC and Power Loss 
Modes
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Field I-V Data

PV systems at all scales produce large amounts of time-series data. 
“Smart” inverters or microinverters measure I-V curves on the string or 
module level.
Parameterizing I-V curves and looking at long-term trends improves 
understanding of system performance, but:
● values are not directly comparable
● changes in these quantities are not necessarily proportional to power loss
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Laboratory-Based Suns-VOC 

Suns-VOC / ISC-VOC

● from I-V at varying light 
intensities

● used to calculate pseudo I-V 
curve

Pseudo I-V curve
● “ideal” I-V
● without series resistance or 

current mismatch
● gain insight about degradation

6

Real I-V

Pseudo I-V

Isc-Voc



Mining ISC-VOC from Field Data

Time-series data is divided into 
analysis periods

● Sufficiently long to collect enough 
low irradiance data to build ISC-VOC

● But short enough to ensure pseudo-
stability of the module

● To evaluate trends in power loss 
modes
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VOC  temperature correction results8

Mini-module method validation Full-size module temp correction



Quantifying power loss mechanisms from ISC-VOC9



ISC-VOC Mechanistic Power Loss Calculation

In each analysis period:
● ISC-VOC is constructed
● and parameterized
● I-V features are modeled
to create the sub-I-V curves for 
mechanistic power loss calculation
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ISC-VOC Power Loss Calculation11



Analytic ISC-VOC Obtained Loss Mechanism Time-series

For outdoor I-V data:

● loss mechanisms as 
time-series variables
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Results for c-Si module in Gran 
Canaria



Analytic ISC-VOC Obtained Loss Mechanism Time-series13

Results for c-Si module in the Negev



Analytic ISC-VOC Obtained Loss Mechanism Time-series14

 M. Wang et al. Evaluation of Photovoltaic Module Performance Using Novel Data-driven I-V Feature Extraction and Suns-Voc 
Determined from Outdoor Time-Series I-V Curves. IEEE 7th WCPEC pages 0778–0783, 2018

Results for c-Si module in the Negev
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Analytic External Quantum Efficiency
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Laboratory External Quantum Efficiency

External Quantum Efficiency 
(EQE)

● Ratio of collected electrons to 
incident photons on device

● Depends on absorption of 
light and collection of charge 
carriers

● Usually measured on cells 
using monochromator

● Unique challenges for 
modules
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pveducation.org/pvcdrom/solar-cell-operation/quantum-
efficiency



Spectral Response vs EQE18

https://pvpmc.sandia.gov/modeling-steps/2-dc-module-
iv/effective-irradiance/spectral-response/

Brennan, M.P.;  Abrahamse, A.; Andrews, R.; Pearce, J. (2014). Effects 
of Spectral Albedo on Solar Photovoltaic Devices. Solar Energy 
Materials and Solar Cells. 124. 111–116. 10.1016/j.solmat.2014.01.046. 

https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/effective-irradiance/spectral-response/
https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/effective-irradiance/spectral-response/


Mining EQE from Field Data

Relies on natural variations in the 
incident solar spectrum

Similar to Analytic Suns-VOC, need 
sufficiently long and varying time 
series
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Brennan, M.P.;  Abrahamse, A.; Andrews, R.; Pearce, J. (2014). Effects of 
Spectral Albedo on Solar Photovoltaic Devices. Solar Energy Materials and 
Solar Cells. 124. 111–116. 10.1016/j.solmat.2014.01.046. 



Time Series Matrix Representation20
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Naive EQE result

Using bound least-squares matrix 
inversion

Local minima corresponding to O2 and 
H2O absorbance in AM1.5G spectrum

EQE is overestimated in IR region due to 
temperature effect on the band gap
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Cleveland, Cutler J., and Christopher G. Morris. Handbook of 
energy: diagrams, charts, and tables. Vol. 1. Newnes, 2013.
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Temperature-based band gap shift applied to spectral data22
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Requires forced bounds

Does not remove spectral bias



Spectral Current Density

Effective current density for the selected 
spectrum

Reflects actual charge conversion of the device 
during outdoor operation
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Schneider, J., Turek, M., Dyrba, M., Baumann, I., Koll, B., & Booz, T. (2014). 
Combined effect of light harvesting strings, anti‐reflective coating, thin glass, and high 
ultraviolet transmission encapsulant to reduce optical losses in solar modules. 
Progress in Photovoltaics: Research and Applications, 22(7), 830-837.



Spectral Current Density Results

Using principal component for standard incident 
spectrum

Bootstrap approach for approximation and 
confidence intervals of result

Time-series analysis can be used to monitor 
changes in spectral response of the module:
● Spectral absorption changes in 

glass/encapsulant
● Front and rear side recombination changes in 

cells
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Conclusions

Mechanistic performance data mined from time-series can be 
used to:
● evaluate long-term trends in performance
● identify dominant or changing degradation mechanisms
Or can be used as a monitoring tool to:
● alert operators to “abnormal” conditions or data issues
● indicate need for service e.g., cleaning
Future work:
● Validation of mined datatypes with laboratory measurements
● Adapt analytic Isc-Voc and EQE measurements for inverter 

data
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