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3 1 Motivation: Mechanistic PV Performance and Degradation

Modeling

Mechanistic understanding of
photovoltaic array performance can
decrease the Levelized Cost of

Photovoltaic Energy via:

e Decreased Operation/Maintenance
Costs
e Increased Energy Production

e Reduced Degradation

H {IF-I_OE—I_M[-I_FI}

=0 (141!
LCOE = ——os
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I - initial cost

O - operational cost

M - maintenance cost

F - interest expenditure

§ - energy production

r - inflation and uncertainty
(1-d) - degradation term
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Analytic ls--V - and Power Loss
Modes




s | Field |-V Data

PV systems at all scales produce large amounts of time-series data.

“Smart” inverters or microinverters measure |-V curves on the string or
module level.

Parameterizing |-V curves and looking at long-term trends improves
understanding of system performance, but:

e values are not directly comparable
e changes in these quantities are not necessarily proportional to power loss



o I Laboratory-Based Suns-V .

muw |sc-Voc curve mmm |-V curve at 1 sun irradiance == Pseudo |-V curve

Pseudo -V

e from I-V at varying light

6 &L Real /-V—— intensities
< e used to calculate pseudo |-V
g 4 curve
o

Pseudo |-V curve

e “ideal” I-V

e without series resistance or

| | | | | | current mismatch
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7 I Mining lg--V ¢ from Field Data

Time-series data is divided into
analysis periods

e Sufficiently long to collect enough
low irradiance data to build lg--V ¢

e But short enough to ensure pseudo-
stability of the module

e To evaluate trends in power loss
modes
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s I Voo temperature correction results
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‘ Quantifying power loss mechanisms from lg--Vc

Detecting loss mechanisms of c¢-Si PV modules by I,.-V,. and I-V

measurement
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0 | Isc-Voc Mechanistic Power Loss Calculation

Reference

In each analysis period:

e |g--Vc is constructed
e and parameterized

e |-V features are modeled

to create the sub-I-V curves for
mechanistic power loss calculation

condition (RC)

POA: 1 sun
Ty median Ty,
at 1 sun

I

Cleaned outdoor
time-series /-V data

}

Feature extraction
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or every data
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1 | lge-Voc Power Loss Calculation

Initial P I-V
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12 I Analytic lg--Vc Obtained Loss Mechanism Time-series

For outdoor |-V data:

loss mechanisms as
time-series variables

APower (W)
o)
o

401

Power loss

mode

X | mismatch * Recombination 4 Rsloss @ Uniform current

Y |
° . 2° ¢ A x X
@ ® ° .. 3 ™
° o® e ¢
. ! o 4 e
s : ¢
P . 4 3 X
[ ] .. X
2010 2012 2014 2016 2018

Date
Results for ¢-Si module in Gran

Canaria




13

Analytic lg--V 5 Obtained Loss Mechanism Time-series
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Analytic lg--V 5 Obtained Loss Mechanism Time-series

Power loss  « |mismatch % Recombination 4 Rsloss @ Uniform current
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Analytic External Quantum Efficiency




17 I Laboratory External Quantum Efficiency

Jo./
. EQE = 25€ q
External Quantum Efficiency (f;

(EQE)
reduced due to rear

e Ratio of collected electrons to . surface recombination,
. : 4 ELL:t;e frﬂﬁfiﬁrf;f r:ii?rminatiun reduced absorption at
Incident photons on device / | ong wavelengins and

e Depends on absorption of chiceney
light and collection of charge
carriers

e Usually measured on cells /
using monochromator >

. B _}h= he  \wavelength
e Unique challenges for Eg

pveducation.org/pvcdrom/solar-cell-operation/quantum-
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External Quantum Efficiency o

A reduction of the overall QE is
caused by reflection and a low
diffusion length. No light is absorbed
below the band gap
so the QE is zero at

long wavelengths
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Spectral Response (AMW)

Spectral Response vs EQE
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v I Mining EQE from Field Data

Relies on natural variations in the
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Time Series Matrix Representation
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21 | Naive EQE result W
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2 | Temperature-based band gap shift applied to spectral data
Varshni, Y. P. Physica 34 o al :
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Synopsis

A relation for the variation of the energy gap (E,) with temperature (7) in semi- ,.: .
conductors is proposed : L
Ey = Eg — o«T¥(T + f) L i
where « and § are constants. The equation satisfactorily represents the experimental 0.5 ' e t .
data for diamond, 5i, Ge, 6H-5iC, GaAs, InP and InAs. .' .‘
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23 | Spectral Current Density

Jse(D) = LHAEQE)

Effective current density for the selected
spectrum

Reflects actual charge conversion of the device
during outdoor operation
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Schneider, J., Turek, M., Dyrba, M., Baumann, |., Koll, B., & Booz, T. (2014).

Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high

ultraviolet transmission encapsulant to reduce optical losses in solar modules.
Progress in Photovoltaics: Research and Applications, 22(7), 830-837.
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24 | Spectral Current Density Results

Using principal component for standard incident
spectrum

o
-]

e
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Bootstrap approach for approximation and
confidence intervals of result
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Time-series analysis can be used to monitor
changes in spectral response of the module:

o
w
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e Spectral absorption changes in
glass/encapsulant
e Front and rear side recombination changes in
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25 | Conclusions

Mechanistic performance data mined from time-series can be
used to:

e evaluate long-term trends in performance

e identify dominant or changing degradation mechanisms
Or can be used as a monitoring tool to:

e alert operators to “abnormal” conditions or data issues
e indicate need for service e.g., cleaning

Future work:

e Validation of mined datatypes with laboratory measurements

e Adapt analytic Isc-Voc and EQE measurements for inverter
data






