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~ S Background and keywords

Research goals:

- Establish experimental capability to determine P, D, S for O, with T
« Accommodate reactive O, loss during permeation experiments

« Understand oxidative degradation of thermoset materials

* Develop models to predict spatial distribution of oxidative damage

Why do we need permeation parameters?

 Limited literature data

* Performance of environmental seals, transport processes
» Characterization of materials

* Predictive DLO models for degradation processes

* Kinetic model refinement explored by other R&D groups

Keywords: Thermoset performance, O, diffusivity, solubility,
permeability, DLO, TOL, degradation depth, modeling
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= 2  What are we dealing with?

+ At elevated temperature polymers and films may act as an O2 barrier
* The underlying permeability is convoluted with degradation chemistry
» A parallel PHYSICAL and CHEMICAL process

Edge oxidation in high temperature composites Laboratory accelerated thermal aging

From Tandon GP, 2011, aging at 177°C

250 hr 750 hr 1500 hr 2000 hr Example of aged epoxy,

Fig. 9.9 Oxidation growth near the laminate edge in [£45],g laminate as a function of aging time degradation is limited to
material surface

« Edge effects complicate the prediction of bulk material aging
* O, Permeation experiments are similarly convoluted

Tandon GP. Characterization of thermo-oxidation in laminated and textile composites. In: Pochiraju KV, Tandon GP, Schoeppner GA, eds. Eggﬁal
Long-Term Durability of Polymeric Matrix Composites. Springer Science + Business Media, 2011, p 345. Laborataries
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= P Permeation at elevated temperature

 Effective flux through polymers at high temperatures can be unexpectedly
low due to reactive oxygen loss
* Determination of permeability as a ‘material property’ requires corrections
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* Primary transport flux measurements do not always yield permeability
- Degradation chemistry interferes, but can be accommodated

Sandia
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~ 2 0O, permeation through thin film

Thin film separation — Mass transport - Membrane characterization

In our case complicated by parallel oxidation because many polymers
oxidize at high temperatures and have low permeability

¢ 02 O 02 02 02 02 O 02 02 02 02 02 02 02 . 02 >

= 02 supply gas feed 02 supply gas feed O2 supply gas feed

5 o, (o 0, % o, 0, o, 0, 0, % o, 0, 0,9 0, 02 o, ©

2 Polymer Film Polymer Film Polymer Film

o o) o)

= Receiving gas to Receiving gas to Receivfng gas2 to
detector o, 0, detector 0, 0,detector o,

Increasing O2 flux into detector flow with time >

Multiple variables need to be considered for successful

determination of P, D, S and material characterization @ Sandia
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— t’ O2 permeation instrument

Application: Precision measurements of O2 permeability through polymer
film materials using commercial sensing system

Optimized system: Customization with external feed composition and flow
control, external temperature stage and permeation cell setup

Software: Unfortunately very limited for R&D, we use external data analysis

New more sensitive MOCON
Ox-Tran 2/21 permeation system

Instrument has high dynamic range but limits for P, D at high T

due to the nature of these experiments Sandia
National
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- Experimental conditions

« At high temperatures diffusivity is fast for thin films (flux changes in minutes)

* Thicker films may lose O2 through oxidation

* Low partial pressure will lower equilibrium permeation flux, but is also more
sensitive to oxidation

* Film thickness )

* Film area

« Transfer flux, detector overload — Experimental range for P
» Partial pressure of feed gas

- Detector sensitivity limit F -1

— P=

Po2

Permeability range: 9 orders of magnitude

P ., = 4.6e-16 ccSTP/cm-s-cmHg (0.01 ccSTP/m?/day, 50 cm?, 25 ym, 63 cmHg-0,)
P...= 1.7e-07 ccSTP/cm-s-cmHg (10000 ccSTP/m?/day, 1cm?, 1mm, 6.6 cmHg-0, (50/50 air/N2)

- Experiments require balancing/optimization of multiple parameters
* There are intrinsic experimental limits
- Additionally the material may oxidize during experiment o
|:l National
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= t’ Analysis of flux curves to yield D

 Traditionally a flux curve (non-equilibrium conditions) has been
interpreted with boundary assumptions and simplification to extract D

Kapton 65°C air integrated flux Kapton 50um, 65°C 0-132mmHg

N
o o

P, =3.72e-11 ccSTP/cmHg-s-cm

D = 8.02e-09 cm?/s

S =4.63e-03 ccSTP/cmHg-cc
t . =-2.3132 min

(=2}
o

t, = 9.35min
D = 7.73e-9 cm?/s

Q [cc/m?]
o
Flux [cc/m 2Iday]
n
o

40t
1.0 -
30
0.5
20t
0.0 meel . ... R B 10
0 10 20 30 40 50 60
. . o 1 1 1 1
Time [min] 0 20 40 60 80

Time [min]

The X-intercept for the line is:
LZ
~ 6D

New method to extract D,

to fitted flux curve

Existing formula interprets slope of integrated flux curve

Sandia
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= } stablished mathematical approach

Traditionally a flux curve (non-equilibrium conditions) has been
interpreted with boundary assumptions and simplification to extract D

Fick’s second law in one dimension with specified
boundary conditions for the experiment:

a_c_Dazc C=f(x1t)
ot ox2 C(x,00=0, CO,t)=C, CLt)=0

Solution through separation of variables and deriving the flux (F = —D a_c)’
0x

the total O2 transmission is then specified:

t

Q(t) = jF(L, 7)dT Then taking the limit: The X-intercept for this
0 y DC, 12 line is then:
0O =7\" "% . L2
"~ 6D

Existing formula interprets slope of integrated flux curve

Sandia
. e _ _— National
Crank J. The Mathematics of Diffusion. 2d Ed. New York: Oxford University Press, 1975 Laboratories
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New mathematical approach

Normalized Fick’s Second Law with reactive term (oxidation), identical
boundary conditions, application of finite difference approximations to both
derivatives to derive the recursive matrix equation.

a0 _ 046 _ ab N 0i+1,j - Qi,j _ 0i,j+1 — 291',]' + Qi,j—l _ C(Hl',j
ot dx2 pO+1 5t Sx? BO; ;i +1
reactive term U
(oxidation)

(a+2)0;, = A8; — R(6;)

_60?

aq 0 ot 2
1 a 1 0 2 2
B (6x)?  a(Sx) af;,;(80)*
. 8 1 a 1‘ | " ot p+1 7 RO ”) 5911"'1
0 an ay =1
| _ _ PoxPoOn-1,i
The flux is then calculated from this solution:  F; = OxL(5X) -

Flux with time is iteratively fitted to experimental data to

extract P, D and S, oxidative term is accommodated @ Sandia
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> ﬂmples of permeative flux experiments

o EponB2B/A2049 @ RT/Air EponB2B/A2043 @ 40°C/Oxygen-Air
14 . : : : ; = 120 . : : : ;
L | Mo Epon828/A2049
o .
Epon828/A2049 1o} 40°C - 02 to Air
10 RT - Air 1 90
= £ m}
= &k P, = 1.33e-11 ccSTP/emHg s-cm =
r D = 4 99e-09 cm?is = B
5= 2.67e-03 ccSTR/cmHa-co sk
£ i i P, = 2.33e-11 ccSTP/omHg-s-cm
A0F D =1.026-08 cm?/s
2F 5= 22903 coSTP/cmHg-co
<l
D 1 1 1 1 1 1 20 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 380
tirme [rnin] tirme [rnin]
Epon328/0230 @ RT/Oxygen Epon328/D230 @ 40°C/ Oxygen-Air
45 : . : 80 . : . . .
a0t
i Epon828/D230
35 °Cc_ :
Epon828/D230 il 40°C - 02 to Air
=T RT - 02 =
5; ar 3; =0y P = 1.298-11 ceSTP/emHg-s-cm
2 2 s
= 20r P, = 7B1e-12 ceBTPiemHg-s-cm — a0} §= 2;?23_32 E?S;SpfcmHg_cc
el D =3.17e-09 cmi/s =
3 =2.40e-03 ccETF/emHg-co sk
o}
o}
5 L
% B0 0 150 20 280 30 30 40 " B0 0 150 200 280 30 30 40
time [min] time [min]
* D, S available from decreasing and increasing flux and changing pressure experiments
* Flux changes modeled with Fickian diffusion behavior — perfect fits %ﬁgﬁm
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* Reactive oxygen loss results in creep at high temperature
» Effective flux is lower at high T

Oxidative reaction reduces flux

MVK-14, 505um

400
130°C

w

(=

o
1

160°C
At 160°C this composite is

highly reactive with O2.
Rlux is reduced.

200 -

100 -

Flux [ccSTP/m?/day]

T T T

10 100 1000

Time [min]

High temperature permeation flux data require partial pressure checks and

corrections for oxidation
Sandia
National _
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Flux reduction - Kapton

* 50 ym Kapton film
« At 150°C oxidation is visible in permeation measurements
* Permeation experiments allow to indirectly determine oxidation rate

°° oo 00 o O
.9 I’Llsgl 11 I’LQIQI 1 1 1 1 I\'blQ 1 1 1 1 r‘“ CI’ 1 1 I’50 0
107 3 1e-7 - - 100
p— ® 63cmHg ] C
£ @ 31.5cmHg —
2 e®e © 13.2cmHg - £
3 °® ® 6.6cmHg =) b
T X Fitted E 71 kJimol o
£ Co® =
g 10-10 . (] Py 1e-8 ] - 10 DE
] T ] =
= ° ® g =
% ) 60 kJ/mol %
S, | Effective permeation o 9,
= X
0_5 | depends on partial o’
pressure at high T 1e-9 : : : : : 1
10-1 . . . . . . . 200 205 210 215 220 225 230
20 22 24 26 28 30 32 34 AT [x10° K]

1T [x10° K™

These experiments show Kapton as majorly oxidation sensitive above 200°C
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> ﬁ Permeability — Diffusivity — Solubility

150°C 100°C 60°C 30°C 100°C 60°C 30°C
10-6 L 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1
=5 agm 10 E - - -
- Permeability - Diffusivity
E‘) 107 3 mm" 105 _ Silicone rubber
= . 11 kJ/mol E 9 kJ/mol
Q 10°® s -
»n £ PFCB w10 = PFCB .
é - Epon 828/A2049 14 kJ/mol ~ £ 22 kJ/mol
§ 109 [epoxy (Tg~150-155°C) .\0\‘_ g - MVK-14 °
E § 28 kJ/mol VK4 (Tg ~318°0) E, 107 31 kJ/mol Eoon 820172073 i
@ 100 13 kdimol __ : 40 kJ/mol
L, Kapton 108 | -
a 10" (Tg ~360-410°C) T 2 Kapton
E 21 kJd/mol B 35 kJ/mol
r 10° & n
10-12 | L | L | L | L | 1 E | L | L | L | 1
24 2.6 2.8 3.0 3.2 34 2.6 2.8 3.0 3.2 3.4
1UT[10° K™ 1UT[10° K™
100°C 60°C 30°C
10-1 5 1 1 1 1 1 1 1 1 1 1
Pox =pD-S EP = ED + ES - Solubility
9 I
? Silicone rubber
;? 102 | PFCBg 2 kJ/mol
= F MVK-14 .8 kJigol
S r -16 kJ/mol Epon 828/A2049
L i -12 kJ/mol
« Ea of 10 to 30 kJ/mol for P = _ _ap,ﬁj}‘msw
 Ea of 10 to 40 kJ/mol for D D 103l i
- . . o =
* Reduced solubility with increased T, o :
up to -15 kd/mol
10-4 T I T T T N S R | R T R T T T

2.6 2.8 3.0 3.2 3.4
1UT[10° K]

* Succeeded to measure flux and determine P, D, S with temperature @ Sandia

 Excellent Arrhenius behavior below Tg and for silicone [ﬂﬂgﬂm
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- “ Permeability — Diffusivity — Solubility
V‘;_ ) Epoxy systems

8150°c 100°C 60°C 30°C 10 100°C 60°C 30°C
10- :I 1 1 1 1 1 1 1 1 1 1 1 1 - 3 L L L L L L L L L L
E Epon 828/D230 - 2 . ..
_ ;e;’g:y (Tg ~95°C) Permeability ; Diffusivity
< 0 [ 55 kJimoy Epon 828/D400 106 L i
g 10° (Tg ~65°C) 61 kJ/mol 7 2 828/D400
o F 62 kJ/mol Masterbond
[ o Masterbond 'a' epoxy adhesive
ul, L © epoxy adhesive ‘\‘\ i (Tg ___4000) 59 kJ/mol
g 10-10 LEpon 828/A2049 e (T9 ~40°C) 69 kJ/mol £ 107 3 -
o " epoxy (Tg ~155°C) o L :
|‘3 :zs kJ/mol 75 kJ/mol (m] L Epon 828/D230
§. 10" | _ 10° 47 kdlmol Epon 828/A2 .
a F 25 kJ/mol ° F 40 kJ/mol
10-12 I | ! | ! | ! | ! | ! 10-9 E_ | ) | ) | ) | ) ]
2.4 2.6 2.8 3.0 3.2 34 2.6 2.8 3.0 3.2 3.4
3 -1
1/T[10” K] 1/T[10'3 K'1]
10-2 - 1 1 1 1 1 1 1 1 1 1
- Ea of up to 75 kJ/mol for P : Solubility
» Ea of up to 60 kd/mol for D g I Epon 828/A2049
+ Solubility increases above Tg ] “12kJimol
:IE: pon 828/D23(
-23 kJ/mol
. . o p
« Theoretical perspective: & 103 | 27 kJmol e
* P is expected to curve at higher T because of 0 0 kJ/mol
&) Masterbond
non-Arrhenius changes in D and S 2
* D will curve at T>T, from free volume theory @
» S is expected to be a power function with T
10-4 PR SR NN SR SR SR SR N S S ST S NN S S S SHN S S TR S
2.6 2.8 3.0 3.2 3.4

1UT[10° K"

P shows much higher Ea above Tg with reversal in solubility @ sandia

Laborataries



Applications?

Sandia
National _
Laborataries



r
Com

* Profile prediction involves the ratio of ®/P
* If oxidation rate and permeability decrease equally then the resulting profiles remain
identical, yet different absolute oxidation levels evolve (governed by oxidation rate)

Shift factor a;

tion of rate and permeability governs depth

10" 5 10" -
1 828/A2049 ] Prediction of profiles with T
] ] 828/D230 requires detailed exp. data
100 - 10° - 4 kJ/mol
S |
107 | 8 kJ/mol 5 101 50 kdJ/mol
1 - 1 75 kJ/mol
102 3 = 1072 E
] @ Permeation 43 kJ/mol (',C) ] 25 kJ/mol
] B Oxidation rate ] @ Permeation
10 5 A Alpha 10 ; B Oxidation rate
] 71 kd/mol ] A Alpha
10.4 T T T T T T 10—4 T T T T T T
2.2 24 2.6 2.8 3.0 3.2 34 3.6 2.2 24 2.6 2.8 3.0 3.2 3.4 3.6
UT [x10° K™ ] n UT [x10° K" ]
Well behaved epoxy a o —— Irregular behaved epoxy system
Linear Arrhenius behavior of @ ox Linear Arrhenius behavior of @,
and consistent change of P but Tg affects transition in P
Eq=Ep—Ep,

First results showing that @ and P can have similar Ea in a specific T range

Sandia
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* Profile prediction is possible when suitable parameters are available
* For lower temperatures oxidation rates and permeability drop, but oxidation rate
decrease faster (higher Ea), resulting in more oxygen to diffuse deeper into material

1e-8

1e-9 A

1e-10 A

1e-11 A

1e-12 -

Oxidation rate [mol/g/s]

1e-13 -

1e-14

828/A2049 rate dependence R=1

0.0 0.5 1.0 1.5 2.0 2.5

 Dynamics of P, @ temperature dependence controls profile formation

Depth [mm]

Well behaved epoxy
Linear Arrhenius behavior of ® and
consistent change of P

3.0

Oxidation rate [mol/g/s]

idation profile formation — T dependence

1e-11 -

1e-12

1e-13 A

1e-14

828/D230 rate dependence R=1

— 25°C
— 65°C
— 95°C
— 125°C

0.0 0.5 1.0 1.5 2.0 25

Depth [mm]

Irregular behaved epoxy system
Linear Arrhenius behavior of O,
but Tg affects transition in P

* With lower T the profiles are generally less steep and deeper

- Tg and its impact on P, @ can significantly affect profile shapes @

3.0

Sandia
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- , TOL - Total Oxidized Layer

—
Epon 828 / Ancamine 2049 at 125°C (U=0) Epon 828 / Ancamine 2049 at 125°C (0=100)
3.5¢-9 3.5¢-9
—_ Beyond a critical depth no
g) 3.0e-9 additional oxidation occurs @ 3.0e-9
g If Pg, is at kinetic 2
E 2.5¢-9 i saturation g 299
@ 2.0e9 1< ord. TOL B >>1 o 2.0e9
) ¢ =0.368 ® Experimental profile
c 1.5e-9 L=61 um > % 1.5e-9 depth can yield factor
.0 o
§ 1.0e-9 E 1.0e-9
g 5.0e-1 ¢ =0.99 g 5.0e-1 ¢ =0.99
i, L=282pum L=117pm
. . 0.0 .
0.01 0.1 1 10 0.01 . 1 10
Depth [mm] 1st order (beta=0) |::> Zero order, Depth [mm]
steep and deep
oxidized layer \l,
Y Y v
D 2 PoxP 2 D 2
TOL ~ (-2) “=("=k) TOL ~ v (=)
kq ¢ k1
1
*Pseudo 15t order: ¢ = k,C /2
¢ 1=s *0th order approx; v = 2( - %)
5

» Discussion of mathematical basis:
» Audouin L, et al. Role of oxygen diffusion in polymer aging: kinetic and mechanical aspects. J Mater Sci 1994;29:56

» Kiryushkin SG, Shlyapnikov YA. Diffusion-controlled polymer oxidation. Polym Degrad Stab 1989;23:18

+ Used for discussion of aging in elastomers, thermosets and thermoplastics:

* Audouin L, et al. "Close Loop" mechanistic schemes for hydrocarbon polymer oxidation. J Polym Sci, Part A: Polym Chem 1995;33:92

» Colin X, Verdu J. Strategy for studying thermal oxidation of organic matrix composites. Comp Sci Tech 2005;65:411

» Devanne T, et al. Radiochemical ageing of an amine cured epoxy network. Part Il: kinetic modelling. Polymer 2005;46:237

* Rincon-Rubio LM, et al. A theoretical model for the diffusion-limited thermal oxidation of elastomers. Rubber Chem Technol 2003;76:460

» Richaud E, etal. Diffusion-controlled radiochemical oxidation of bisphenol A polysulfone. Polym Int 2011;60:371 )
* Lc90 used by Gillen et al. (Emphasis on maximum thickness to achieve homogeneous oxidation in accelerat ndia

« TOL requires expt. data for aging models; Lc90 & profiles can be predicted based on oxidation rates a
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828/A2049 Color Variation

69hr exposure at 140°C

828/D230 Color Variation

1348hrs at 95°C

V
o w — Total Oxidized Layer - Examples

"« Actual (discoloration) and predicted oxidation profiles (DLO modeling) are available for epoxy

TR At 5 ; —p-0 e a0 |
S “\'Aﬂ.'p._;‘l —p = l“..f [ | —p =1
P —p=10 ot | — =0
Iy 4 ﬁ>>1q E ' o B>>10
- ’ o o PR AN
| | ) - — -
[} 0.1 0.2 Depth [‘:-nfm] 0.4 0.5 0 01 0.2 Depth [':;fm] 0.4 0.5
- - - -1 -1 -1
Pox [ccSTP cm™ cmHg™ s |¢ [mol g s™] |p[gccT] Pox [ccSTP cm™ ecmHg ™" s"][@ [mol g s7'] [p[g cc™
3.10E-10 6.70E-09 1.134 1.15E-10 2.57E-10 1.148
TOL 1st order(beta =0) 49 um TOL 1st order 152 um
TOL zero order (beta=100) 70 um TOL zero order 248 um
Lc90 (Gillen definition) 57 pum Lc90 (Gillen definition) 177 pm
L., Profile for 1% Order
1.0
§ "] 57 um for 828/2049 at 140°C
5 061,177 pm for 828/D230 at 95°C
o N
:E: 0.4
g ,,| Homogeneous oxidation
of thin films
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Relative Position

TOL depends on kinetic regime, at high O, pressure the profile is stee
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4 *:’ OL - Total Oxidized Layer - Examples

iy

. Degradation gradients and predicted oxidation profiles (DLO modeling) are available for epoxy

828/D230 Color Variation
1348hrs at 95°C

TOL = v (k%)l/z 0 order

Oxidation [%]

D\72 /p p 1/,
TOLz(k—l) =(%°) Pseudo 1st order

0.4 0.5

L] 0.1 0.3
Depth [mm]

TOL for 828/D230
G AR A . -
— 90% Jox 1 11 4 1
—— TOL 1st order Pox [ccSTP cm™ cmHg™ s7']|® [molg s ]1|p[gcc™]
T o Dodvelow 1.15E-10 2 57E-10 1.148
E 11 TOL 1st order 152 um
b TOL zero order 248 um
é Lc90 (Gillen definition) 177 um
2 01 )
= Theoretical TOL 1st order
0-01 T T T T T T T

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
1000/T [1/K]

TOL may be useful for steep profiles, generally is conservative

Sandia
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Vis yal® gradation in 828/D230 system 140 - 80 °C

——

.| pon '828/D230. (20X) -

% , 182d,4%" edge‘OXIdatlon
: A
||||||||||||||||||||||||||||||||
3m 0.4mm 0.5mm
"y ‘_\;’ﬁ" i

0.4mm 0.5mm

828/D230 system to ~ 4% edge oxidation (20X)

T[°C] L1[mm] L2[mm]

140 0.25 0.46
125 0.31 0.56
110 0.29 0.48
95 0.21 0.39
80 0.18 0.32

. 95°C,

VAT L
iy

d, 4% edge ondation

* 7 Epon ;tsmzso (20%) "

|IIIIIIIII|IIIIIII
J4mp1 0.5mm

e
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= .-‘ﬁlodeling of cable assembly degradation

Permeability is key input into FEM codes

DLO Oxidation Rate

Sandia
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Approach towards non-equilibrium conditions

Modeling of DLO evolution

DLO Pressure Profile, MB 50°C t=0hrs

1

1.5 P

0.

5
X [mm]

()
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bonyl imaging, epoxy adhesive

0.347

0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
Z-axis 014
012
01
‘ 0.08
y-axis
0.06
0.04

0.02
0.00694

« Master bond adhesive, aged 30 days at 105°C
* DLO profile less than 1mm, significant carbonyl decay in 500 micron
* IR picks up ‘chemical’ degradation profile which correlates with color

Thermo-oxidatively aged epoxy adhesive specimen

I
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y-axis [pm] |
11 |

nyl imaging of epoxy bond line

~r

e i A s 3.12
o =

3

25400
|

2.8

26

25200
|

24

| 2.2
2

18

25000
|

16

14

1.2

24800
|

1

0.8
T [ 0.6
42500 43000
- » 25 years aged at RT under air
a * Major carbonyl formation
E . @
! I I ! I !
3500 3000 2500 2000 1500 1000

Wavenumber cm-1

Highly aged (oxidized) epoxy adhesive at RT @ %ﬁﬂﬁm
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Summary

« Customized commercial detector system for high T experiments

* New flux data analysis with reactive term for diffusion mathematics
» Obtained extensive P data set for multiple thermoset materials

« Extracted D and S where possible

« Tg appears to affect solubility more than diffusivity

« We have obtained input parameters for advanced DLO degradation models

« We better understand oxidative aging of thermosets

* Impact: Ability to predict material oxidation behavior in complex geometries

)

Sandia
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Instrumental range

» Detector sensitivity, film area, thickness, partial pressure

* 0.0035 ppm 1 cm2 20 pm 6.6 cmHg (0.5*air)
« 70 ppm 50 cm2 2 mm 63 cmHg (02)
* Factors:

20000 50 100 10

Total 10°

~ 9 orders of magnitude

Sandia
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