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Introduction
• Modern power grids include a variety of Distributed Energy Resources (DER) that use 

power electronic interfaces.
• Characterization and modeling of such DER under abnormal scenarios, such as faults, 

need to be studied and proposed.
– Additional research and validation is needed for inverter models during transients or faults 

when they reach their current limiting controls. 
– However, inverter manufacturers are reluctant to provide such models or control schemes, in 

great part because of conflicts of intellectual property.

• Traditional protection systems are designed for large fault currents from synchronous 
and induction machines.

– Short-circuit modeling and protection of traditional systems is well established.
– Increasing penetration of inverter-interfaced resources underscore the need of inverter 

models for short circuit studies.

• Modern protective relays are starting to incorporate protection features suitable for 
transmission lines close to nonstandard generators or low-inertia systems. 
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Inverter-Based DG Impacts on Protection
• The legacy protection was not designed for the presence of 

inverter-based DG

• Common Protection Issues and Impacts:

– Reverse power flow and multiple injection points of fault current

– Loss in coordination between protection devices

– Relay desensitization

– Load rejection transient over-voltage

• Inverters do not provide significant current during faults
– Overcurrent protection schemes might not detect the fault

– Fault currents can look similar to motor starts or inrush

– Low fault currents can vary more proportionally to the generation dispatch, 
complicating coordination   
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Inverter Short-Circuit Models
• It is important to have accurate models of inverters for dynamic studies and protection

– Initial spike (~0.1ms) depends on filter cap, system impedance, and prefault conditions

– Transients during control actions, lasting 2-8ms

– Steady-state fault current based on the current limiter. Current based control schemes used 
in grid-following inverters (GFLI) tend to limit the current more aggressively (~1.2-1.5 p.u.) 
than voltage regulation schemes used in grid-forming inverters (GFMI) (2-3 p.u.)

• One way to understand and observe inverter dynamics under fault scenarios is through 
laboratory experimentation.
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• Power Hardware in the Loop (PHIL) setups provide advanced fault testing capabilities.

• This experimental PHIL setup can test and validate GFLI dynamics under faults in different 
conditions – grid connected, islanded low inertia microgrid

Experimental testing setup for grid-following inverters (GFLI) 
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Experimental testing setup for grid-forming inverters (GFMI) 

• With the inverter either removed from the EPS 
or in an islanded state, a variable load is 
utilized to source current from the inverter. 

• DC power can be from PV, Battery/ESS, or ideal 
DC power supply. Inverter response is 
evaluated using battery emulator.

• By increasing the absorbed power of the load 
to a value greater than the rated power of the 
inverter, the voltage will drop below nominal, 
similar to that of a line-to-line or line-to-neutral 
faults.
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GFLI Response to Phase Angle Jumps
• During a fault, the voltage angle suddenly changes due to the new X/R ratio with the fault resistance

• For grid-following inverters (GFLI), the PLL tracks the voltage angle to keep a specific power factor

• Experimental tests shown for a 24 kVA inverter with a 20⁰ shift in all three phases (3-phase-to-
ground fault) – PLL controls the current back to the setpoint (unity power factor) in ~2 cycles
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Advanced Inverter Impacts on Distribution Protection

• Because the GFLI PLL quickly 
resynchronizes during faults, 
the angle of the inverter 
fault current injection is 
dependent on the power 
factor of the inverter before 
the fault

• The inverter current angle 
changes the current 
magnitude through the 
protection devices (changing 
coordination)
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Inverter Tests – Single-Line-to-Ground Fault
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100 kVA GFMI provides negative sequence currents (I2), and zero 
sequence currents (I0) provided by the delta-wye step-up transformer
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Grid-Forming Inverter Mode Transition Experiment
• With GFMI and load on one side of a 

contactor (SW1), starting with GFMI in grid-
following mode and grid connected.  Open 
contactor to test the transition of the 
inverter from grid-following to grid-forming
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Conclusions
• Accurate characterization and modeling of inverter-based DER under fault 

scenarios will play an important role in the protection of microgrids or low-inertia 
systems.

• Hardware experiments provide validation data that is valuable for developing 
inverter-based models for modeling distribution systems with high penetration of 
power electronics

– Real-time PHIL interfaces simulation with hardware such that the inverter models can be 
directly compared to the hardware response to the same signal

– Advanced PHIL simulation setups can also help with fault dynamics since they provide 
the interfacing of DERs with more realistic operational scenarios.  
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