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Meteorite Basics
Featuring the Muonionalusta Meteorite



Metallographic Preparation
Mounting

Thermosetting compression mounting with Buehler EpoMetTM G mounting compound

Metallographic Preparation
1. Planarizing – Global Abrasive Solutions 180 grit SiC paper

2. Fine Grinding – Global Abrasive Solutions 320 grit SiC paper
3. Coarse Polishing – Advanced Abrasives Aqua-Pol 9 um diamond suspension

4. Fine Polishing – Advanced Abrasives Aqua-Pol 3 um diamond suspension
5. Vibratory Polishing – Advanced Abrasives Premasol 0.06 um colloidal silica

Etching [2], [3]

2% Nital – 98 mL ethyl alcohol and 2 mL nitric acid
4% Picral – 100 mL ethyl alcohol and 4 g picric acid

10% Sodium Metabisulfite – 90 mL water and 10 g sodium metabisulfite



Muonionalusta Meteorite Microstructure

Kamacite Plessite

Two-phase mixture of kamacite and 
taenite that is the last to develop from 

the retained taenite during cooling

Taenite

Ferritic phase in meteorites was 
recognized before ferrite was identified 

as a component of steel [1]

Ferritic iron with up to 7.5% Ni-content

Taenite is to meteorites 
what austenite is to steel

More than 25% Ni-content

10% Sodium Metabisulfite, 20 seconds, polarized light



Finger Plessite

Cellular Plessite
Kamacite grains follow the 
Widmanstatten directions

Tainite grains along grain 
boundaries and varying 

kamacite grain orientations 2% Nital etch, 5 seconds, brightfield



2% Nital Etch

Reveals Neumann Bands
Colors Kamacite preferentially

Does NOT reveal Neumann Bands
Does NOT color Kamacite preferentially

4% Picral Etch



Meteoritic Inclusions
• Schreibersite (Karasburg)

• A phosphorous-rich and irregularly shaped inclusion that becomes 
visible when the bulk composition of a meteorite reaches 0.06% P

• Appears as a yellow precipitate with a micro-hardness of 800-950 HV 
• It is extremely brittle; so much so that micro-indentations will typically 

cause cracking to form within the inclusion
• Troilite (Gibeon)

• A sulfur-rich inclusion that is bronze-colored and is irregularly shaped
• It has a micro-hardness of 220-280 HV



10% Sodium Metabisulfite, 20 seconds, polarized light



Karasburg Meteorite



Gibeon Meteorite History
• First discovered in 1838 by 

Captain J.E. Alexander

• Many other masses have been 
located at cattle farms throughout 
the area

• Gibeon meteorites have been 
found as far as 143 miles away 
from the impact site



Gibeon Characteristics
• Chemical analysis (in wt. %):

• Microhardness: 
• Kamacite: 170 ± 20 HV

• Kamacite width: 300 ± 50 µm – Fine Octahedrite
• Famous for Widmanstatten pattern

• Primarily features kamacite, taenite, plessite, and troilite
• Does NOT feature schreibersite

Ni Co P
7.93 0.41 0.04



Gibeon Meteorite MicrostructureAcicular Plessite

4% Picral etch, 10 seconds, brightfield



Limonite

“Rust” by-product that is 
found near the surface of 

samples

Schreibersite

Meteoritic phosphides with a 
BCT-structure with yellow-ish 

appearance. Very brittle.
Observed Hardness: 812 HV

Reported Hardness: 800-950 HV

Prismatic Rhabdites are a form of 
Schreibersite, and form at a lower temperature 

within kamacite grains. These precipitates 
have a higher Ni content4% Picral etch, 10 seconds, brightfield



Ni P
41.05 12.51

Schreibersite (wt. %)



Recrystallized Microstructure

4% Picral etch, 10 seconds, brightfield



2% Nital etch, 5 seconds, brightfield 10% Sodium Metabisulfite etch, 20 seconds, polarized light

Neumann Band Annealed Neumann Bands



[1]



Meteorite Comparison

Gibeon

• Troilite
• Not reheated

Karasburg

• Schreibersite
• Reheated

• Schreibersite
• Reheated

Meteorite X

Ni (wt. %) P (wt. %)
8.7 0.23

Ni (wt. %) P (wt. %)
7.93 0.04

Ni (wt. %) P (wt. %)
8.55 0.20



Conclusions
• The following features were evaluated…

• Meteoritic Inclusions
• Microstructure (signs of reheating, recrystallization)
• Meteorite Chemistry
• Gibeon/Karasburg Geography

• Based on the evaluated information, this meteorite can most 
accurately be classified as a Karasburg meteorite



10% Sodium Metabisulfite, 20 seconds, polarized light
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