nylsubjectivelviewslol mightibelexpressedfin| SAND2021-7902C|

DepartmentjoflEnergyjorfithejUnitedjStatesjGovernment.
Sandia

National
Laboratories

Thisipaperldescribeslobijectiveltechnicallresultsfandianalysis.JA
hellpaperfdojnotinecessarilyfrepresentlthejviews|offthejU.S.

Local to regional scale

simulation of small events it el
with 2D finite differences. i

Rob Porritt

Lisa Linville, Andrea Conley, Thomas
Catanach, Rigobert Tibi, John Merchant,

Nathan Downey, and Chris Young.

(@ ENERGY NS4

 Secunty Aamiistrason

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Technologvl&lEngineeringlSolutionsfofiSandia ILLC falwhollvlo
subsidiaryjoff[Honeywelljinternationalfinc. JforitheJU.S JDepartmentfoflEnergy'siNationalfNuclearlSecuritylAdministrationfundericontraciDE-NA0003525.

Energy’s National Nuclear Security




Future of waveform modeling

Waveform Signal Propagation Metric: Improve travel-time,

amplitude, and full waveform predictions of signal propagation
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C U D A 2 D S | mu |at0 r Shallow explosive source recorded in the near-field @ I

A GPU implementation of the 2D Finite Differences
code used by Caltech (Helmberger, Clayton, Vidale,
et al.”)

Pushing the simulation to GPUs provides fast calculation and natural
parallelization.

Simulation only considers Vp, Vs, and density (i.e. it does not account for
intrinsic attenuation or lattice preferred orientation anisotropy).

FD is 8th-order in space, 2nd order in time
2D significantly reduces the computational domain.
Higher spatial and temporal resolution than 3D versions.
P-SV and SH systems have to be run separately.
Out of plane scattering and attenuation is not fully accounted for.

—_
1S
=
K=
S
a
9]
a

verCoord, stationNane = receiverfoord[4], network receiverfoord [2], location = receiverCoord[5])

beginPad=beginpad, endPad=endpad, h=h, minDepth=mindepth, maxDepth=maxdepth,
1]

Simulations organized through a Python wrapper L= sisuiatar.Tempragh el (bugiaPubbopispad, anduieid
(Nathan Downey) e e

The interface script facilitates a natural method to define synthetic sources
and receivers.

Methods are included to test 1D models or path-specific 2D cross-section
models extracted from 3D models, such as CRUST1.0.

Functions allow the user to manipulate the 2D models with additions such as
stochastic structural perturbations or overlaying parts of one model onto the
existing model.

Built-in sanity checks prevent runs with unstable velocity models or source i CFL3.5, f_max=s, dispersionConditiontin=2.8)
*Li, Henperger, Clayton, Sun, 2014, GJI

Eye test showing how easy it is to setup a simulation

=8, replaceMantle=False]
replaceMant le=False]




Code validation: other synthetic methods @) I

2D Finite Difference

150 200
Offset [km]

1D Reflectivity

Offset [km]

Single homogeneous half-space

The 1D Reflectivity code [Kind, Tibi] is fast, but struggles with complex I
media, particularly low velocity zones.

SpecFEM3D is the academic world standard for global to regional
scales. However, it becomes computationally intractable for local, high [
frequency cases.

As with any engineering problem, it comes down to optimizing between
three competing preferences. In this case, speed, accuracy, and
medium complexity. -

2D vs. 3D, differences vs. elements

— specFEM
CUDAZD FD

Single homogeneous half-space, dirac comb STF



Code validation: published Oklahoma event
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Continuous Wavelet Transform @ I

Following Mousavi and Langston’s demonstration of the CWT for denoising, we’ve translated their I
Matlab software into Python for adaption into our workflows and experimentation.

Surface level advantage is that it decomposes a waveform into time-frequency
space without short-time windowing needed for standard spectrograms. :
Deeper level advantages may stem from changing which mother wavelet(s)

are USig

Marlet wavelet representation

M, 3.11
45 km away |
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Observed to synthetic correlation
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Oklahoma M5.5 vs. Utah local M3.11
Dominated by Love wave. 5.5 km depth

Oklahoma M55 at 186 km
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Simulations with a Utah local 3D tomography model @) I
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Simulations with a Utah local 3D tomography model and CRUST1.0 @ I

Tomio + CRUST1.0 Sediments + Moho Vp

Tomo + CRUST1.0 Sediments + Moho Vertical I
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Adding the sedimentary layers from CRUST1.0
creates a significantly more realistic surface wave
train as well as the P wave coda.
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Effect of stochastic perturbations
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Resulting waveforms

Vertical, explosion source
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Increasing perturbation amplitude

Vertical, double-couple source
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13 1 Quantifying P/S and P/Pcoda

These plots show the difference
between the maximum perturbation
value tested and the minimum
perturbation value tested.

Variability is dominant, but

may reflect variable background
structures as this is not a true
record section along one structural
swath.

Nonetheless, we do see for the
earthquake case, large P/S ratio

for large scattering near the source
and the reverse is the case for more
distant stations.

Despite our visual inference
previously, there is no quantifiable
difference in P/P coda ratio.
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CWT Correlation for M3.11 in Utah

CWT Correlation

16 Hz

Correlation

Lo |
(%]
G
c
S
O
O
N,
o
S
-
o
a
~
N
=
>
0
c
C
>
o
O
—
i

100
Distance [km]




Next Steps I

Develop and test more metrics for parameter similarity. |
Continue to explore signals in the wavelet domain.

Test envelope functions.

Look to fit large events at short periods to push towards higher frequencies and smaller events. |
Quantify trade-offs with 3D codes.

Explore Full-Waveform Inversion for regional scales.




Summary I

We’'re working with an efficient 2D finite differences simulator which has been validated against
alternative 1D and 3D methods and real-world earthquakes.

Decomposing the waveforms into the wavelet domain provides a method of quantifying data fit as
a function of frequency.

Shallow, low velocity structure and stochastic structural perturbations have significant effects on
the surface wave and coda amplitudes at high frequencies. I

Validating synthetic waveforms at frequencies above ~1 Hz and for small events may require a
focus on matching waveform based measurements, rather than wiggle for wiggle replication.




