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Characterizing Disorder and
Defect Structures in

Fluorinated Graphite Using
NMR
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Li Batteries: CF, Larger Theoretical Capacities @
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Understanding CF, Material Lot-Lot Variations @
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= Carbon source plays an important role in material performance.

PC = petroleum coke; CF = carbon fiber; CB = carbon black

Advance Research Chemicals, Inc. (Catoosa, OK)

Brennan J. Walder and Todd M. Alam, “Modes of Disorder in Poly(carbon monofluoride)”, J. Am. Chem. Soc., 143(30), 11714-11733 (2021)




Do we really understand the (CF) structures? @
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= Need to understand what is the actual structural motif in these different materials.




(CF), Crystal Polymorphs
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= Mixture of different ring conformations. CF warped
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Rimsza, J. M.; Walder, B. J.; Alam, T. M. Influence of Polymorphs and Local Defect Structures on NMR Parameters of
Graphite Fluorides. J. Phys. Chem. C, 125, 2699-2712 (2021).
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2D PF-1°F Exchange Spectrscopy (EXSY)
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= Magnetization exchange between F environments through F-F dipolar coupling.
= Allows spatial structure to be determined.
= Different ring conformations (i.e. structures) inter-mixed.

= Very disordered structure - not a single CF_ polymorph.
= Also reveals CF, edge effects with evolution of structure across platelet.

Brennan J. Walder and Todd M. Alam, “Modes of Disorder in Poly(carbon monofluoride)”, J. Am. Chem. Soc., 143(30),
11714-11733 (2021) https://doi.org/10.1021/jacs.1c05234 .




15F MAS NMR Dynamic Spectral Filtering

19 ]
1D "°F MAS NMR versus CT-d,y echo Each sample has different ring flexibility
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11714-11733 (2021) https://doi.org/10.1021/jacs.1c05234 .

Brennan J. Walder and Todd M. Alam, “Modes of Disorder in Poly(carbon monofluoride)”, J. Am. Chem. Soc., 143(30), J



Disordered Structures — Chemical Shift Predictions @
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Brennan J. Walder and Todd M. Alam, “Modes of Disorder in Poly(carbon monofluoride)”, J. Am. Chem. Soc., 143(30), 11714-11733 (2021)
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Brennan J. Walder and Todd M. Alam, “Modes of Disorder in Poly(carbon monofluoride)”, J. Am. Chem. Soc., 143(30),
11714-11733 (2021) https://doi.org/10.1021/jacs.1c05234 .
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Quantification of Structure in Different CF Lots
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2 Understanding Disordered C-F Chemistry
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Distribution of BDEs in the Chair Structure

Chair Base BDE = bond dissociation energy
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Base Disordered Structures Show BDE Differences @
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Defluorination Pathway of CF_ Chair Structure
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Conclusions

9F MAS NMR provides unparallel information on CF,, disordered structure.

Quantified C and F speciation.

Structure dependent on carbon source and preparation methods.
Simple picture of perfect chair structure misguided.

Disorder impacts CF bond energetics - lowered by ~ 0.5 eV.

F defects further lowers CF bond energetics.

19F MAS NMR provides an excellent tool to follow defluorination.
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