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Abstract—The following research presents an optimal control
framework called Oxtimal that facilitates the efficient use and
control of photovoltaic (PV) solar arrays. This framework
consists of reduced order models (ROM) of photovoltaics and
DC connection components connected to an electric power
grid (EPG), a discretization of the resulting state equations
using an orthogonal spline collocation method (OSCM), and
an optimization driver to solve the resulting formulation. Once
formulated, the framework is validated using realistic solar
profiles and loads from actual residential applications.

Index Terms—Microgrid, Solar, Photovoltaic, Control, Opti-
mization

I. INTRODUCTION

In the modern grid of today and the smart grid of tomor-
row, reduced energy consumption and greater stability can
be realized through the use of predictive control technology
integrated with renewable energy. This approach leverages
a combination of historical and real-time data to optimally
synchronize green energy assets for balanced supply and
demand. Simultaneously, microgrids are being used to im-
prove reliability and resilience of electrical grids and manage
the addition of distributed green energy resources like wind
and solar photovoltaic (PV) generation, which helps reduce
carbon-based generation dependency [1]. As a secondary
benefit, microgrids also provide electricity to areas not
served by centralized electrical infrastructure [1].

From a United States Department of Energy Office of
Energy Efficiency and Renewable Energy (DOE EERE)
perspective a reliable and secure energy grid that uses
Distributed Energy Resources (DER) will be needed to
ensure continuous electrical infrastructure that is indepen-
dent of weather or unforeseen events [2]. DER examples
for residences and businesses include rooftop solar panels,
backup batteries, and emergency conventional generators [2].
Community-scale microgrids can also provide resiliency and
backup during and after disasters such as hurricanes [2]. To
manage risks associated with microgrid islanding and stand-
alone applications improved control designs are needed for
enhanced grid support and services.

Many researchers [3], [4], [5], [6], [7] have investigated
advanced control techniques for microgrids. Nevertheless,
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the DC microgrid is still new in terms of grid architecture
and control systems [8]. Within these microgrids, Energy
Management Systems (EMS) are necessary for optimal use
of DERs in a control structure with secure, reliable, and
autonomous self-regulating functionality [8]. In addition,
DC distribution systems are ideal for integrating DER and
Energy Storage Systems (ESS) [9], [10], which are critical
for the stability, reliability, and overall performance in a
microgrid.

In this paper a fundamental EMS for DC microgrids
in terms of ESS sizing and performance optimization is
discussed. The fundamental framework relies on ROMs [11],
[12] of residential PV, ESS, and DC power electronics that
serves residential loads as part of a DC microgrid scenario
summarized in Figure 1.

More specifically, the following paper describes a control
framework for a residential PV microgrid that uses an
optimal control algorithm based on an on-line optimization
engine with a receding horizon control. The meaning and
reason behind each of these characteristics is described
below.

This control framework uses the term optimal control
since the control results from the solution of an optimiza-
tion formulation that minimizes certain criteria. Given the
formulation is not convex, the control framework does not
guarantee a global minima, but given sufficient time it
can guarantee a local minima. In practice, this minima is
acceptable for control.

Even though this approach lacks a real-time guarantee,
it may still be used as an on-line control. In an on-line
control, the control framework repeatedly solves the control
problem on a running system over a specified time horizon.
This differs from an off-line control, which solves the control
problem for a system not in operation. Although an on-line
control requires a prediction of the future, as long as the
inputs to the system can be predicted sufficiently well, it
can provide a useful control. Suh and Choi [13] provide
an overview of modern methods and software for estimating
electric power production from PV systems. The NREL code
System Advisor Model (SAM) [14], [15] is an example of
a piece of software that provides these predictions.
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In order to make the process of prediction and control
more robust, this control framework employs a receding-
horizon control, which is also known as a model-predictive
control. In a receding-horizon control, the inputs that charac-
terize the system are predicted over a specified time horizon
and then a control over this time period is found. This
time period is known as the planning horizon. If the actual
inputs to the system differ too far from this prediction, the
previously solved control is discarded and a new control is
determined. This shorter time window is called the execution
horizon.

Since an on-line control does not provide run-time guar-
antees, this kind of control is generally used for medium
to long-term planning. For short-term control, an on-line
control is typically combined with a real-time control that
moderates rapidly changing dynamics.

The coordination between the different controls can be
accomplished through the use of software agents located
throughout the power system architecture. Software agents
monitor the state of the system through the use of sen-
sors, determine the appropriate course of action, and then
influence the system behavior by advising the different
controllers. The use of software agents for power system
control continues to evolve. Recently, there has been empha-
sis on single agent control strategies coupled with team level
strategies [16]. Wilson et al. describe one such methodology
for combining these controllers [17] and a simplified diagram
of how these components interconnect can be found in
Figure 1. While these interactions are important, this paper
focuses on the longer term plan through the use of the
optimal control used by the on-line control.

The methodology presented in this paper can be compared
to the techniques used by a variety of different teams. Park et
al. studied the use of a model predictive control for shipboard
power management systems [18]. There, the authors use
an integrated perturbation analysis and sequential quadratic
programming (IPA-SQP) solver from Ghaemi, Sun, and
Kolmanovsky [19] to find a control that determines how
power is used within the system. The framework presented
here differs from Park et al. in that their work attempts to find
a real time controller, but sacrifices optimality in the case
where the perturbation in the initial conditions is too large.
The framework under discussion finds an optimal solution,
but provides no real-time guarantees and must be used on-

line. Both methodologies also differ in the reduced-order
model used for their respective analyses.

Abhinav et al. [20] present an optimization strategy for
the frequency synchronization of multiple AC microgrids.
In their approach, they formulate the control as a convex
optimization problem, which they then solve using the
Alternative Directional Multiple of Multipliers (ADMM).
The framework here differs from their approach in that
their work focuses on synchronization of AC microgrids
and this framework focuses on the overall operation of DC
microgrids. Next, their work uses distributed optimization
algorithms whereas this framework uses a parallel, nonlinear
optimization solver. In addition, while both methodologies
use a circuit based reduced order model, they differ in the
actual model used.

The framework described in this document improves upon
the reduced order model, discretization, and optimization
used by Wilson et al. [21], [22], [17], Young, Cook, and
Wilson [23], Weaver et al. [11], and Hassel et al. [12].
In this paper, the reduced order model of the electrical
microgrid is both simplified and generalized by combining
the microgrid components into an alternating sequence of
series and parallel circuit components that represent the
power system. Next, the discretization is improved from a
finite difference method to an orthogonal spline collocation
method. This allows for improved model fidelity and state
control. Finally, this resulting formulation is solved using
faster, more powerful algorithms from a prototype version
of Optizelle [24], which implements an inexact composite-
step SQP method combined with a primal-dual interior point
method. This allows the model fidelity to be improved by
over an order of magnitude. Nevertheless, the formulation
is generic and other nonlinear optimization algorithms and
software can be applied. However, their performance is not
examined here.

This current approach to control was first described in
a paper by Young, Wilson, and Cook [25]. This paper
improves upon and differs from that work in two key
respects. First, it changes the application from a shipboard
power system to a residential PV application in an effort to
demonstrate the broadly applicable nature of the reduced-
order model as well as the control framework. Second, it
presents and demonstrates how nonlinear bounds can be
implemented and applied to the state variables within the
control formulation. This last feature is somewhat unusual
for an optimal control due to the difficulty in implementing
such a feature in a more traditional differential equation
solver such as a Runge-Kutta method.

Finally, this work is being presented in conjunction with
a separate paper from Young, Wilson, Weaver, and Robinett
[26] that details a similar approach to the control of wind
turbines. Though related, these two papers differ in the
reduced-order models used and objective sought by the
optimal control formulation.

The paper is divided into six sections. In Section II, the
paper introduces the reduced order model used to represent
the microgrid. In order to discretize these equations, Sec-
tion III describes the orthogonal spline collocation method.
Using the fully discretized dynamics, Section IV formulates
the optimal control. Then, using the completed framework,



Section V describes the application of the optimal control
to a small DC solar microgrid scenario. Finally, Section VI
summarizes the paper’s findings.

II. REDUCED ORDER MODEL

To model an electrical microgrid, this control framework
represents the microgrid as a circuit using Kirchoff’s circuit
laws. Similar to the work of Wilson et al. [21], [22], [17] and
Young, Cook, and Wilson [23], [25], the model is comprised
of an alternating sequence of series DC circuits in Figure
2 or parallel DC circuits in Figure 3. In these diagrams,
components outlined in dotted squares are optional.

In this reduced order model, power generation is rep-
resented as either a constant current source in a parallel
DC component or as a constant voltage source in a series
DC component. In the series components, the variable A
denotes the duty cycle in an average-mode model of a
boost/buck converter. Only one such switch occurs in an
individual component and its location depends on the voltage
difference between the source and sink. As far as storage, it
is represented using the variable v and is present either as a
voltage source in a series DC component or a as a current
source in a parallel DC component. In the parallel DC
component, the variable P represents a direct power load that
removes a specified amount of power from the system, which
models the load from a given device. In a similar manner, d
represents a kind of dispatchable load. Like P, it removes
power from the system, but the controller is given the ability
to softly meet a load demand, D. This means that the control
may provide more or less power at any particular instance
with the overall goal of providing the same amount of energy
over the entire planning horizon. When possible, the original
load profile is followed. In terms of connectivity, the parallel
DC component may accept any number of sources and sinks
whereas the series DC component contains a single source
and a single sink.

Using these components, the state dynamics for the series
DC components are represented as

Nvsre + [u] = Li' + Ri + [Nvsng (1
1(0) = 1o 2
tmin < % < Tmax 3)
w' = —ui 4)
w(0) = wo )
0 < w < Wmax (6)
0<A<1 @)

and the parallel DC components as

Z[)‘src]isrc + [u] =

SDhwntlisni+ O + 5+ (2] 4[] ©
v = const )
w = —vu (10)
w(0) = wy (11)
0 < w < Wpax (12)
0<d (13)

In these equations and bounds, square brackets denote el-
ements that may be present or not present depending on

the configuration of the grid. As a note for the DC parallel
component, since the control framework holds v constant,
the capacitor C' becomes vestigial and the resulting formu-
lation becomes a differential algebraic equation (DAE.) As
a result, holding v constant does create some difficulty since
the resulting system may not necessarily be feasible without
enough fidelity in the available controls. Most often, this
can be ensured by requiring that there exist more control
than state variables after discretization modulo bounds on
the control variables.

In summary, the control framework employs a reduced
order model comprised of an alternating sequence of parallel
and series circuits. These components are highly config-
urable and allow a microgrid that contain a various assort-
ment of generation, loads, voltages, and storage devices to
be quickly assembled.

III. DISCRETIZATION

In order to satisfy the dynamics described in the previous
section, the control framework uses an Orthogonal Spline
Collocation Method (OSCM.) Properties of this approach are
described by de Boor and Swartz in [27]. In short, an OSCM
represents each unknown function as a Hermite cubic spline
with unknown coefficients. These coefficients become the
variables in the optimization formulation. The polynomials
that constitute these splines are given by

hoo(t) =(1 +2t)(1 — t)° (14)
hio(t) =t(1 —t)* (15)
hoi(t) =t*(3 — 2t) (16)
hii(t) =t*(t — 1) (17)

Then, the control framework attempts to satisfy the dynamics
at specified points called collocation points. When the collo-
cation points correspond to Gaussian quadrature points, the
OSCM converges to the true solution of the DAE at the rate
O(h*) where h denotes the largest interval in the mesh used
by the Hermite cubic spline.

In order to assemble the system of equations required for
optimization, the control framework employs an assembly
scheme similar to the one used by older versions of Chebfun
[28], [29]. It accomplishes this by creating and utilizing a
combination of evaluation operators, I, and differentiation
operators, D, that map the coefficients of a Hermite cubic
spline to the evaluation of that spline, or its derivative,
at the collocation points defined by the spline’s mesh. In
other words, the domain of these operators is the space
of coefficients of the spline and the codomain is either
the evaluation or derivative at the collocation points. For
example, the differential equation

u = —u (18)

is discretized as

Da = —Ea (19)

where « represents the coefficients of the spline. Note, this
example does not impose boundary conditions, but these
can be enforced using a similar methodology. As a note,
while Chebyshev polynomials generally provide a superior
approximation and model fidelity, Hermite cubic splines
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possess a number of desirable properties that are utilized
by this control framework.

As shown by Carlson and Fritsch [30], the control frame-
work can bound the values of a Hermite cubic spline over
the entire domain by bounding the coefficients. Succinctly,
the Hermite polynomial

p(t) = arhoo(t) + aghio(t) + ashor(t) + aahii(t) (20)

is bounded between [ and u on the interval [0, 1] whenever
the following inequalities are satisfied

3l <3a;1 + as < 3u 2D
3l <3a1 —as < 3u (22)
3l <3a3 + ay < 3u (23)
3l <3a3 — ay < 3u. 24)

If an upper or lower bound is undesired, simply remove that
side of the inequality. Note, this approach not only allows the
control variables to be bounded, but the state as well. Further,
these bounds are satisfied over the entire domain and not just
at the collocation or mesh points. This ensures that certain
values, such as the overall power output of a generator or
the capacity of a storage device, are never exceeded.

These bounds can be extended to nonlinear functions as
well. To bound the Hermite polynomial p by the Hermite
polynomials [,

l(t) = llhoo(t) + ltho(t) + l3h01(t) + l4h11(t),

and u,
U(t) = Ulhgo(t) -+ Uthg(t) —+ Ughol(t) —+ U4h11(t), (26)

a similar bound can be used,

(25)

3l +1ls <3a1 + az < 3ug + us 27)
3l — lp <3ag — as < 3up — us (28)
3ls + 14 <3a3z + ay < 3usg + uy 29)
3l — 14 <3a3 — ay < 3uz — uy. 30)

As a result, if a nonlinear bound can be represented by a
Hermite cubic spline on the same mesh as the bounded state
or control variable, then it can be bounded over the entire
domain.

One additional benefit of using Gaussian quadrature points
as collocation points is that a spline can be quickly in-
tegrated. Specifically, given the mesh Q = (to,...,tnele),
spline s, and collocation points C, then

5 | s

Parallel DC Component

Enele nele—1
/ st = 3 (e — t1)(5(Corsr) + 5(Cony2)).
to k=0

(31)

In summary, the OSCM provides a tool that allows the

discretization of the reduced order model of the microgrid.

It is numerically stable, sparse, allows both differentiation

and integration of its quantities, and can be bounded over
the entire domain.

IV. OPTIMAL CONTROL FORMULATION

In order to specify the behavior of the control, this
framework focuses on two different objectives. First, the
framework provides the ability to limit the use of storage
necessary to satisfy the dynamics of the grid. Second, the
framework gives the ability to limit the deviation of the
dispatchable loads from their desired usage.

With respect to the storage, some scenarios require the
storage devices to remain discharged and others require them
to remain charged. To accommodate each of these cases, it
uses the objective

tend
min / (Wag — w(t))?dt
0

where wy, represents the target amount of energy in the
storage device. If a discharged storage device is requested,
this is zero, and if a charged device is required, this iS Wy ax-
Note, the discretization techniques described above provide
a fast methodology to compute these integrals.

In order to match the actual dispatchable load to the
desired, two different objects are used. First, in order to
match the shape over time, the framework minimizes the
integral of the difference between the desired load D and
the actual load d squared

min /0 ) — (o).

This objective penalizes the deviation at any point in time.
Second, to match the overall energy expenditure from the
dispatchable load, the framework minimizes the square of
the integral of the difference between D and d

min ( /0 ) - D(t)>2 dt.

This allows the electrical microgrid to catch back up to an
overall state in case it needed to divert power elsewhere.

(32

(33)

(34)
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Fig. 4. Residential PV microgrid. P denotes a parallel component and S
denotes a series component. Base of the arrow denotes a source and the
point a sink.

Generally speaking, matching the overall energy expenditure
is more important than matching the shape, so the expendi-
ture objectives should be weighted higher than the shape

objectives.
Putting this all together, the optimal control formulation
becomes
Minimize  Use of storage devices
Deviation from dispatchable load
Subject to  Series DC component dynamics

Parallel DC component dynamics
Note, any combination of the above objectives and their

weighting can be used.

To solve the above formulation, the control uses a proto-
type version of Optizelle [24], which implements a modified
version of the composite step SQP method developed by
Ridzal and Heinkenschloss [31], [32], [33]. This is combined
with a primal-dual interior point method in a manner similar
to NITRO described by Byrd, Hribar, and Nocedal [34].
The augmented systems that arise from this formulation are
solved using a Q-less QR factorization developed by Davis
[35].

V. COMPUTATIONAL RESULTS

In order to validate the control framework, consider a
reduced order model of a small DC microgrid consisting
of a single PV array shared between two houses described
by the topology in Figure 4. The components in this reduced
order model correspond to the components in Figures 2 and
3. Within these components, the following parameters are
used

1) PV voltage, vgpe - 110 V

2) PV sink, vg,, - Transmission

3) PV inductance, L - 0.001 H

4) PV resistance, R - 0.121 (), which gives a parasitic
loss of 250 W at max generation

5) PV minimum current, 4,,;, - 0 A

6) PV maximum current, i, - Nonlinear function de-
termined by the NREL code System Advisor Model
(SAM) [14], [15] based on 5 kW max generation
using averaged historical weather information for Al-
buquerque, NM on a typical May 1

7) Transmission source, ig.. - PV

8) Transmission sink, i, - Connection 1 and 2

9) Transmission voltage, v - 200 V

10) Transmission resistance, R - 160 2, which gives a
parasitic loss of 2560 W

11) Connection source, Vg, - Transmission

12) Connection sink, vg,; - House 1 or 2

13) Connection inductance, L - 0.001 H

14) Connection resistance, R - 0.05 €

15) House source, i4,. - Connection 1 or 2

16) House voltage, v - 220 V

17) House storage, wmax - House 1 contains 3 MJ (0.83
kWh) of storage whereas House 2 contains 4 MJ
(1.11 kW h) of storage. The storage uses two different
capacities to improve the visibility of the plots.

18) House load, P - Nonlinear function derived from
load profiles determined by sampling loads from two
separate houses located in Albuquerque, NM

19) House dispatchable load, D - No dispatchable load,

but potentially useful here to model smart devices that

can shed load when demand is exceptionally high

House resistance, R - 193.6 ) - Parasitic loss of 250

W

As far as the discretization, the control framework solves
for a control that lasts 9 h (0700-1600) using a discretization
with 2161 elements. This gives a mesh with node boundaries
every 15 s and results in an optimization formulation that
contains 86440 constraints and 95084 variables.

In terms of the objective, the control framework attempts
to keep the energy storage devices at 90% charge. The
purpose of this objective is to keep the storage devices
mostly charged while preserving their ability to assist in the
operation of the grid by either storing or delivering power.

The load demands can be seen in Figure 5. To handle
these load demands and refill any energy storage devices,
the grid uses the amount of power in Figure 6. Note,
the difference between the amount of generation and the
maximum amount of generation represents unused power
that could be potentially redistributed to a municipal power
grid. The amount of energy stored in each house can be seen
in Figure 8. Recall, the goal is to keep the energy storage
devices at 90% charge and not use them when not required.
Here, the control meets this goal and only uses the storage in
the morning when demand exceeds supply. In order to bring
this power to the appropriate loads, the grid transfers power
from one component to another. The duty cycles associated
with the changes in voltage during this transfer can be seen
in Figure 7.

For a closer look at a portion of the scenario from 0830-
1030, consider Figures 9, 10, and 11. Here it can be more
easily seen how the storage is used to meet load demand.

20)

VI. CONCLUSIONS

The preceding document describes a framework for the
optimal control of an electrical microgrid powered by a PV
array.

The control framework consists of a reduced-order model
of an electric microgrid comprised of a collection of series
and parallel circuit components, a discretization based on an
orthogonal spline collocation method, and an optimization
engine used to solve the resulting formulation.

To validate the control framework, it is applied to a small
residential power grid using a combination of historical
weather information and actual loads. The resulting control
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demonstrates that the use of storage devices can be mini-
mized through the effective coordination.

In the future, this work can be extended to work on
alternative scenarios of interest as well as incorporate AC
modules.
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