Sandia
Application of Photorheology to the National ___

Characterization of UV-Curable Resins for DIW AM

A Temperature Ramp -

5 Temperature Ramp - 3

100

EHT=1000kV
Temperature T (°Cc)

Leah Appelhans, Sandia National Laboratories

Sam Leguizamon, Jessica Kopatz, Adam Cook

August 25, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2021-8449PE|

@ ENERGY NUISA

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



. I Acknowledgements

Thanks to:
Sam Leguizamon ‘
Nick Monk, Liz Zapien I
Jess Kopatz :
Adam Cook, Derek Reinholtz
Current and former Dept. 1853 |

$$$ NNSA NA-115 Additive Manufacturing

Development Program ‘



)
s 1 SNL DIW Thermosets Research Printing of
acrylate/epoxy

UV/thermal dual-cure
system

Development of thermoset resins for DIW

- Develop thermoset systems to target specific materials I
requirements.
- Characterize resin component contribution to physical ‘

properties and cure kinetics to enable design of tunable
resin systems.

o Characterize DIW-unique factors that impact network
formation, extent of cure, and final properties.

- Develop printability metrics and optimize print
techniques for varied thermoset systems.

7mW/cm?




Application of Photorheology to the Characterization of UV-
Curable Resins for DIW AM

OR |

Taking the Fun Out of 3D Printing

Proposed rendering




s 1 Resin Optimization for AM Printing

Langmuir 2002, 18, 5429—5437

Colloidal Inks for Directed Assembly of
3-D Periodic Structures

© Stereolithography (SLA) James E. Smay,'* Joseph Cesarano III,* and Jennifer A. Lewis*'

- Layer-by-layer photopolymerization of
T - ‘nal of Manufacturing Processes 35 (: 3) 526-53
flowable |IqUId resins Journal of Manufacturing Processes 35 (2018) 526-537
What makes a material printable? A viscoelastic model for extrusion-based
y . 3D printing of polymers

- Fused deposition modelling (FDM) PHENg OF POLY

f d fil t fabricati FFF Chad Duty™", Christine Ajinjeru”, Vidya Kishore®, Brett Compton®, Nadim Hmeidat”, Xun Chen",
( used filament tfabrication, ) Peng Liu”, Ahmed Arabi Hassen”, John Lindahl”, Vlastimil Kunc™"™*

> Extrusion of thermoplastic filaments
International Journal of Mechanical Sciences 137 (2018) 145-170

> Direct ink write (DIW) Mechanical performance of wall structures in 3D printing processes:
- Extrusion of an ink or resin Theory, design tools and experiments
- Shear-thinning, reactive, or in situ cure A.S.J. Suiker

Additive Manufacturing 35 (2020) 101177

A comprehensive review of the photopolymerization of ceramic resins used

in stereolithography

Setareh Zakeri*, Minnamari Vippola, Erkki Levidnen




s 1 Epoxy/Acrylate Dual Cure: Determine Printability by Printing

UV Print Intensity vs Modulus (Print Cure Only)
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Acrylate network controls the green strength, print parameters optimized for each formulation.



-1 UV Rheology: A “New” Characterization Tool

» Correlate UV exposure profiles and
conversion to rheological behavior

» Design printable resins w/o printing*

 Peltier oven allows control of lower plate
temperature

« 365 nm filter to mimic printing
conditions




Storage modulus G’ (Pa)
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UV Rheology: Basic Measurements

Continuous exposures at varying intensity for 15wt% acrylate resin. Irradiation time = 25 min
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Continuous exposures can be
used to:

Investigate effects of:
* Intensity
 Formulation

* Fillers

On:

 Reaction rates

* Gel point/modulus crossover
* Plateau moduli
 t=xmoduli




gI UV Rheology Applied: Photo-ROMP AM = i
[i [ > ROMP

Used UV rheology to easily investigate photopolymerization DCPD
reaction rates with minimal catalyst/resin. 0-DCPD

UV on (365 nm @ 120 mW/cm?) ’ ‘
108
107
106
10°
10¢
. o 10°
ey s ‘ % ‘A 10°
NMQ} AL 0

Se -7 10°

HeatMet 2-isopropylthioxanthone (ITX) 0 50 100 150 200 250 ‘
Time [s]

oo ﬂﬁ
ﬁ9 Oﬂ?\’lb
Proypy o b

cis-Caz-1
cis-Ru-1

- =~

Storage Modulus (G’) [Pa]




10| UV Rheology Applied: Photo-ROMP AM = i

m ROMP

DCPD

Investigate the effect of silica (rheology modifier) on
photopolymerization rates and modulus evolution.
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Storage modulus G’ (Pa)

+ 1 UV Rheology: Basic Measurements

Continuous exposures at varying intensity for 15wt% acrylate resin. Irradiation time = 25 min
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Storage modulus G’ (Pa)

2 1 UV Rheology: Basic Measurements

Continuous exposures at varying intensity for 15wt% acrylate resin. Irradiation time = 25 min
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Storage modulus G’ (Pa)

s I UV Rheology: Basic Measurements

Continuous exposures at varying intensity for 15wt% acrylate resin. Irradiation time = 25 min
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UV Rheology: Basic Measurements

Continuous exposures at 35 mW/cm? for different acrylate wt% resins.
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Storage modulus G’ (Pa) /\

s 1 UV Rheology: Basic Measurements

Continuous exposures at 35 mW/cm?for different acrylate wt% resins.
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s I UV Rheology: Pulsed exposures

Transverse Longitudinal
AW AR,

Print path determines exposure profile.

A Exposure Profile Transverse Bars A Exposure Profile Longitudinal Bars
(same spot in middle of sample) (same spot in middle of sample)
2.1s 0.4s 0.4s 0.4s 0.4s 0.4s
dose dose dose dose dose dose

& & & P » i

‘Bead 1"Bead 2”Bead 3"Bead 4” Bead 5'
3s/bead 3s/bead 3s/bead 3s/bead 3s/bead

v

18.3s/layer 15 s/layer
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UV Rheology: Pulsed exposures

Pulsed exposures at varying intensity for 30 acrylate wt% resin.
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Pulsed exposures can be used
to mimic print conditions.

Investigate effects of:
 Dark cure

« Exposure times

« Exposure profiles

On:

Gel point
Plateau moduli
t = x moduli
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TmW/cm?

UV Rheology: Can pulsed exposures predict printability?

s
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Where predictions fall short: Modulus prediction
T

29 mW/em? G’ for UV rheo vs printed bars
14 mW/cm? 2 : o)
550 1 7w 5 mW/cm? for varying acrylate wt%
= wt% acrylate G’ (plateau) G’ (plateau)
E (UV rheo) (printed)
g, 15 0.03 0.16
30 0.22 25.2
50 1.15 125.9

G’ for UV rheo vs printed bars 15wt% acrylate
varying intensity

Intensity

G’ (plateau)

G’ (plateau)

(mW/cm?) (UV rheo) (printed)
57 0.03 0.16
20/26 0.81 2.74
75/NA 2.57 -




I Where predictions fall short: Interlayer adhesion




I Where predictions fall short: Clogging/cure effects on extrusion




» 1 Conclusions

Successes:
» Downselect resin formulations based on photokinetics

 Interrogate effects of formulations, UV intensity, UV
dose, and exposure profiles (pulse length/dark times)

Needs future work:

» Correlation between photorheology measurements and
printed properties is not 1:1

» Translate models for thermoplastics, inert thermosets,
and reactive resins to photocatalyzed dual-cure resins

» Topology optimization-like predictive print design DCPD Photo-skywriting



» 1 Supplementary Slides




Adam Cook/Derek Reinholtz

« LED spot-curing system, 365 nm

« Controllable UV intensity
(max ~450 mW/cm?)

* Print nozzle diameter from 0.15-1.55 mm
* Table speed 0.01 mm/s to ~60mm/s
 Print dimensions 300x300x200 mm

« Constant volume extrusion




25| UV-Thermal Dual Cure Resin Formulation

l

. fumed silica O
(rheology A O
)\U/ \LA i \U/K O modifier)

radical photoinitiator
dlmethacrylate (2,2-dimethoxy-1,2-diphenylethanone)

SRV ~ |
M M
o VAO/ o triepoxy NG N—oN |

epoxy latent cure initiator

UV-thermal Epoxy/acrylate Formulation <L 0

. 1-ethyl-3-methylimidazolium
d|ep°xy dicyanamide

Sequential Interpenetrating Polymer Network

Eﬂﬁ o z,w |
g5) ; UV cure éé thermal cure
B SN :

uncured resin mixture acrylate network forms epoxy network forms




2 I Pulsed exposures comparing 300 s and 20 s dark times
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] But after 15 min continuous exposure final modulus is similar
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2 I Pulsed exposures with 3 s vs 1 s pulse lenghts

AMT1-74-1_75mw_cm2_fast 5 Hz_pulsed 2x1x20_test 1
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Storage modulus G’ (Pa) /A
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Pulsed exposures comparing 10s and 20 s dark times

For short dark times negligible differences for
plateau modulus (before and after continuous
exposure) but there are short-time differences.
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2 I Pulsed exposures mimicking transverse bar prints (30wt% acrylate)

2 x 3s pulsed exposure (transverse)
varying intensities, 30wt% acrylate resin.
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o I UV Rheology

2 x 3s pulsed exposure, 20 s dark (transverse)
smW/cm2, varying wt% acrylate resin.
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2) In situ cure

Single cure for rapidly
polymerizing systems
UV initiated

° Thermally initiated

o Rapid RT polymerization Thermally initiated frontal polymerization
(FROMP) of poly(DCPD) thermoset

Robertson et al. Nature, 2018, 557, 223

Additive Manufacturing 23 (2018) 374-380 ‘

Dual-cure
- UV/thermal

> Acrylate/epoxy most common

- Thermal/thermal
> Different initiation temperatures
> Kinetic differentiation

-UV/UV

> Different initiation wavelengths
> Kinetic differentiation

7TmW/cm?2

Printing of acrylate/epoxy UV/thermal dual-cure system



» I Acrylate Network Formation and UV Power Determine Printability

15 wt% dimethacrylate at 5% UV
(7 Wicm?)

15 wt% dimethacrylate at 25% UVP 10 wt% dimethacrylate at 85% UVP
(35 W/icm?) (115 W/cm?)
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