



Exceptional service in the national interest

# ACCOUNTABLE NUCLEAR MATERIAL PRODUCTION FROM FISSILE ISOTOPE PRECURSORS IN ADVANCED FUEL CYCLES: The Case of Protactinium

PRESENTED BY

Eva C. Uribe, S. Matt Gilbert, Louise G. Evans, Nicholas Luciano, Richard Reed, Natalie McGirl, Jeffrey Powers



INMM & ESARDA JOINT VIRTUAL MEETING | 25 AUGUST 2021



Sandia  
National  
Laboratories



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND20XX-XXXX P





## SPECIAL THANKS TO...




S. Matt Gilbert, SNL



Nicholas Luciano, ORNL



Natalie McGirl, ORNL



Jeffrey Powers, ORNL



Richard Reed, ORNL



Louise G. Evans, ORNL



## WITH LOTS OF GUIDANCE FROM...

Benjamin Betzler, ORNL  
Mark Bruhnke, SNL  
Ben Cipiti, SNL  
Emory Collins, ORNL  
Bill Del Cul, ORNL  
Zoe Gastelum, SNL  
Brandon Grogan, ORNL  
Gary Hirsch, ORNL

Donald Kovacic, ORNL  
Alan Krichinsky, ORNL  
Bradley Patton, ORNL  
Barry Spencer, ORNL  
Nathan Shoman, SNL  
Matthew Sternat, SNL  
David Williams, ORNL  
Michael Whitaker, ORNL

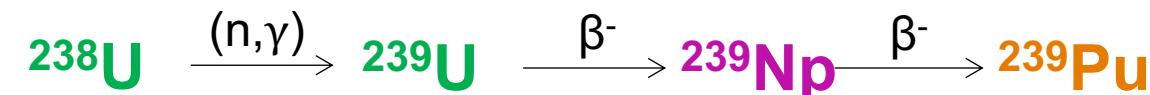
## AND SUPPORT FROM...

Office of International Nuclear Safeguards



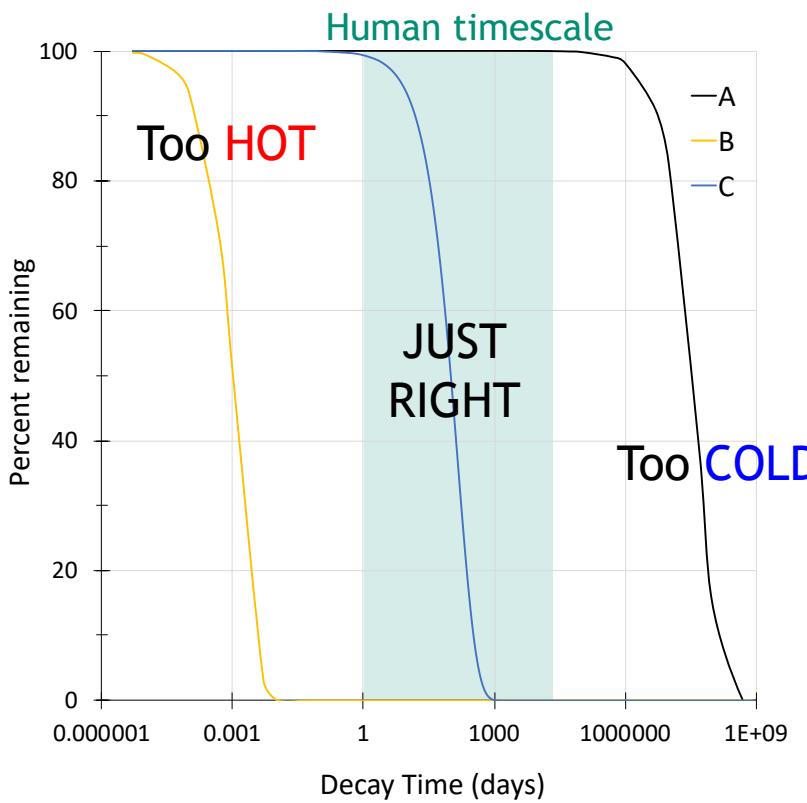


# DIFFERENTIATING FERTILE, FISSILE, AND FISSILE PRECURSOR NUCLEAR MATERIALS


| Fertile Materials                                                                          | “Fissile Precursor” Materials *                                                                                                                                                 | Fissile Materials                                             |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Neutron capture converts these to fissile material                                         | Spontaneously decays to fissile material; intermediary isotope between fertile and fissile material                                                                             | Able to undergo nuclear fission with neutrons of all energies |
| Thorium-232<br>Uranium-232<br>Uranium-234<br>Uranium-238<br>Plutonium-238<br>Plutonium-240 | Protactinium-233 ( $T_{1/2} \sim 27$ days)<br>Protactinium-235 ( $T_{1/2} \sim 24$ mins)<br>Neptunium-239 ( $T_{1/2} \sim 2.4$ days)<br>Neptunium-241 ( $T_{1/2} \sim 14$ mins) | Uranium-233<br>Uranium-235<br>Plutonium-239<br>Plutonium-241  |

\* Not subject to materials accountancy

Thorium-Uranium Cycle:




Uranium-Plutonium Cycle:



# IDENTIFYING FISSILE PRECURSORS OF INTEREST

1. Protactinium-233 persists long enough ( $T_{1/2} \sim 27$  days) to isolate from spent fuel
2. Protactinium-233 decays fast enough to accumulate uranium-233 on IAEA timescales
3. Protactinium-233 may be chemically processed to obtain uranium-233 of high isotopic purity
4. Protactinium-233 is not subject to material accountancy protocols or international safeguards

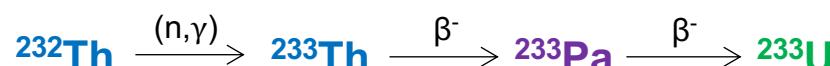


| Material Category       | Example                                                                       | Timeliness Goal |
|-------------------------|-------------------------------------------------------------------------------|-----------------|
| Unirradiated direct-use | Plutonium, uranium-233, high enriched uranium in fresh fuel rods              | 1 month         |
| Irradiated direct-use   | Plutonium, uranium-233, high enriched uranium in spent (irradiated) fuel rods | 3 months        |
| Indirect use            | Natural or depleted uranium Thorium                                           | 12 months       |



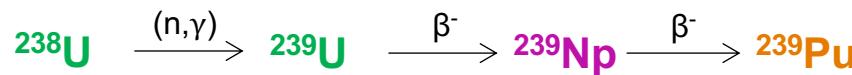
# KEY RESEARCH QUESTION

Will technological advances in nuclear fuel cycles enabling short-cooled or online spent fuel partitioning result in the need to monitor fissile isotope precursors, *in order to meet accountancy and timeliness goals for nuclear materials?*


## A PROTACTINIUM CASE STUDY:

- How is Pa-233 produced? → Identify leading candidate fuel cycles
- How much Pa-233 is generated, and on what timescales? → Conduct reactor simulations
- Can Pa-233 be isolated on meaningful timescales? → Conduct chemical separations calculations
- How can we monitor and verify Pa-233? → Simulate detector responses

# PROTACTINIUM-233 IS GENERATED IN ALL THORIUM FUEL CYCLES


|                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                      |                                                  |                                                |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|
|  0 <sup>th</sup> Generation (decay of $^{233}\text{Pa}$ to $^{233}\text{U}$ ) |  1 <sup>st</sup> Generation (Mothers of $^{233}\text{Pa}$ ) |  2 <sup>nd</sup> Generation (Mothers of $^{233}\text{Th}$ and $^{237}\text{Np}$ ) | $^{239}\text{Am}$<br>11.9 h<br>$\epsilon$ 99.99% | $^{240}\text{Am}$<br>50.8 h<br>$\epsilon$ 100% | $^{241}\text{Am}$<br>432.6 y<br>$\alpha$ 100% |
|                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                      | $^{237}\text{Pu}$<br>45.64 y<br>$\epsilon$ 100%  | $^{238}\text{Pu}$<br>87.8 y<br>$\alpha$ 100%   | $^{239}\text{Pu}$<br>24110 y<br>$\alpha$ 100% |

## Thorium-Uranium Cycle:



|                                                 |                                                                 |                                                  |                                                 |
|-------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| $^{235}\text{Np}$<br>396.1 d<br>$\epsilon$ 100% | $^{236}\text{Np}$<br>1.54E+5 y<br>$\epsilon$ 86%, $\beta^-$ 14% | $^{237}\text{Np}$<br>2.144E+6 y<br>$\alpha$ 100% | $^{238}\text{Np}$<br>2.117 d<br>$\beta^-$ 100%  |
| $^{233}\text{U}$<br>1.592E+5 y<br>$\alpha$ 100% | $^{234}\text{U}$<br>2.455E+5 y<br>$\alpha$ 100%                 | $^{235}\text{U}$<br>7.04E+8 y<br>$\alpha$ 100%   | $^{236}\text{U}$<br>2.432E+7 y<br>$\alpha$ 100% |
| $^{232}\text{Pa}$<br>1.32 d<br>$\beta^-$ 100%   | $^{233}\text{Pa}$<br>26.975 d<br>$\beta^-$ 100%                 | $^{234}\text{Pa}$<br>6.70 h<br>$\beta^-$ 100%    | $^{235}\text{Pa}$<br>24.4 m<br>$\beta^-$ 100%   |
| $^{231}\text{Th}$<br>25.52 h<br>$\beta^-$ 100%  | $^{232}\text{Th}$<br>1.40E+10 y<br>$\alpha$ 100%                | $^{233}\text{Th}$<br>21.83 m<br>$\beta^-$ 100%   | $^{234}\text{Th}$<br>24.1 d<br>$\beta^-$ 100%   |
| $^{230}\text{Ac}$<br>122 s<br>$\beta^-$ 100%    | $^{231}\text{Ac}$<br>7.5 m<br>$\beta^-$ 100%                    | $^{232}\text{Ac}$<br>119 s<br>$\beta^-$ 100%     | $^{233}\text{Ac}$<br>145 s<br>$\beta^-$ 100%    |

## Uranium-Plutonium Cycle:



- $\alpha$  Alpha particle
- $\beta^-$  Beta minus
- $\epsilon$  Electron capture
- Z Proton number
- N Neutron number
- y Years
- d Days
- h Hours
- m Minutes
- s Seconds

# THE LEADING CANDIDATES FOR THORIUM FUEL CYCLES ARE:

| Reactor Type/Fuel Cycle                                                                                            | Developer                       | Focus for this work                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Pressurized Water Reactor (PWR)</b> with once through cycle or multiple fuel recycling                          | ThorEnergy (Norway)             | Compare $^{233}\text{Pa}$ production rates for a variety of fuel compositions.<br>Compare $^{233}\text{Pa}$ production rates for fresh vs. recycled fuel. |
| <b>Advanced Heavy Water Reactor (AHWR)</b> with fuel recycling                                                     | BARC (India)                    | Compare $^{233}\text{Pa}$ production in startup, transition, and equilibrium cores.                                                                       |
| <b>Fast Breeder Reactor (FBR)</b> with fuel recycling                                                              | BARC (India)                    | Determine $^{233}\text{Pa}$ concentrations in axial and radial thorium blankets.                                                                          |
| <b>Molten Salt Breeder Reactor (MSBR)</b> with continuous reprocessing to remove fission products and protactinium | Flibe Energy (USA), CAS (China) | Quantify $^{233}\text{Pa}$ in fuel salt and in online reprocessing system.                                                                                |



# WHAT IS A SIGNIFICANT QUANTITY OF PROTACTINIUM-233?

|            | Material                                             | Significant Quantity | Applies to...    | Select Precursors (half-life, decay mode)                                                              |
|------------|------------------------------------------------------|----------------------|------------------|--------------------------------------------------------------------------------------------------------|
| Direct use | Plutonium <sup>a</sup>                               | 8 kg                 | Total element    | Neptunium-239 (2.356 days, $\beta^-$ )                                                                 |
|            | Uranium-233                                          | 8 kg                 | $^{233}\text{U}$ | <b>Protactinium-233 (26.975 days, <math>\beta^-</math>)</b><br>Neptunium-237 (2.14E+06 yrs, $\alpha$ ) |
|            | High enriched uranium ( $^{235}\text{U} \geq 20\%$ ) | 25 kg                | $^{235}\text{U}$ | Protactinium-235 (24.44 mins, $\beta^-$ )<br>Plutonium-239 (24110 yrs, $\alpha$ )                      |

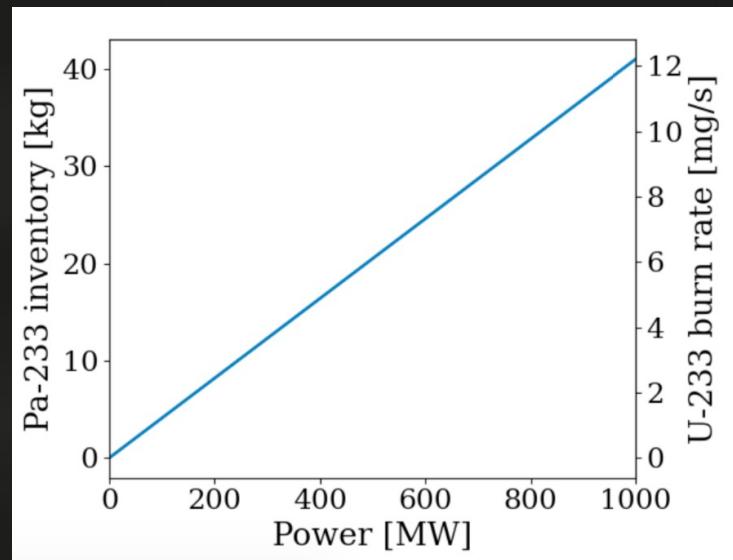
<sup>a</sup> For plutonium containing less than 80% plutonium-238

A significant quantity of protactinium-233 will decay spontaneously to a significant quantity of uranium-233 within several half-lives (~few months).

IAEA Safeguards Glossary 2001 Edition, International Atomic Energy Agency (Vienna, 2001)

# ESTIMATING PROTACTINIUM PRODUCTION

Assuming equilibrium condition


- Rate of Pa-233 Decay = Rate of U-233 Fission
- Constant power, all driven by U-233 Fission
- Minimal loss of Pa-233 to neutron absorption

Starting from:

$$\lambda_{Pa} = \frac{\ln(2)}{T_{1/2}} \quad R = \frac{PM}{EN_a} \quad I_{Pa} = \frac{R}{\lambda_{Pa}}$$

Gives us an upper bound on  $I_{Pa}$ :

$$I_{Pa} = \frac{MT_{1/2}}{EN_a \ln(2)} * P \approx \underline{41 \text{ kg / GWth}}$$



$R$  = fission rate for U-233

$I_{Pa}$  = Pa-233 inventory

$P$  = reactor power

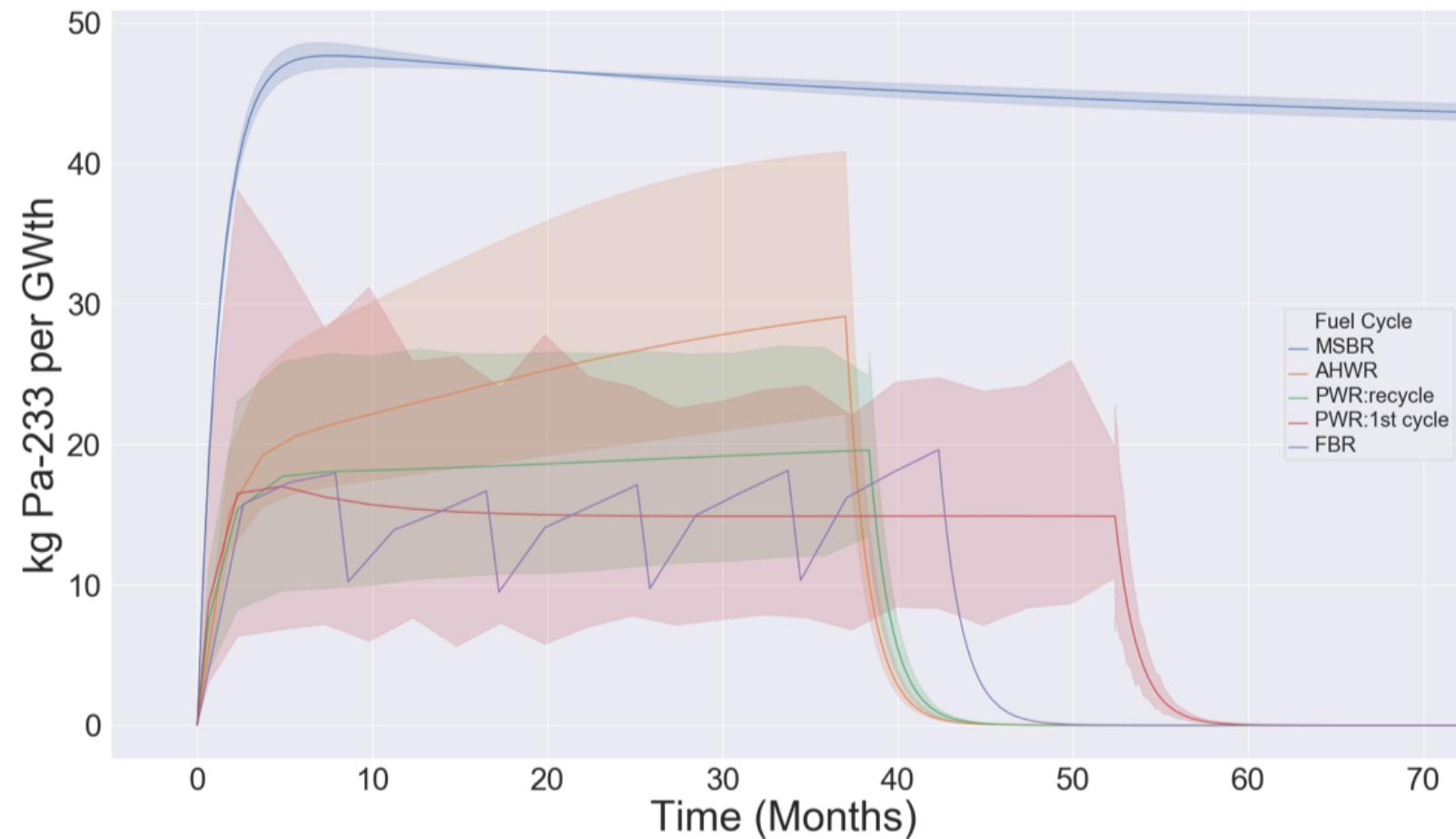
$M$  = molar mass of U-233

$T_{1/2}$  = half-life of Pa-233

$\lambda_{Pa}$  = decay constant for Pa-233

$E$  = average energy per fission

$N_a$  = Avogadro's number


# HOW MUCH PROTACTINIUM-233 IS THERE IN A FUEL CYCLE?

- Pa-233 at shutdown varies from 3 to 42 kg/GWth

|      |                   |
|------|-------------------|
| MSBR | ~40 kg / GWth     |
| AHWR | 20 – 40 kg / GWth |
| PWR  | ~3 – 30 kg / GWth |
| FBR  | ~20 kg/GWth       |

- All fuel cycles can produce at least a “significant quantity” of protactinium-233

How does potential isolation of protactinium impact safeguards technical objectives?





# ISOLATED PROTACTINIUM INVENTORY DEPENDS ON FUEL CYCLE

| Power from $^{233}\text{U}$ Fission (% of 1 GWth) | Quantity $^{233}\text{Pa}$ (kg/GWth) |                   |                   |                      |
|---------------------------------------------------|--------------------------------------|-------------------|-------------------|----------------------|
|                                                   | At reactor equilibrium               | +3 months cooling | +6 months cooling | +12 months cooling   |
| 100 MW (10%)                                      | 4                                    | 0.38              | 0.036             | $3.4 \times 10^{-4}$ |
| 200 MW (20%)                                      | 8                                    | 0.76              | 0.073             | $6.7 \times 10^{-4}$ |
| 500 MW (50%)                                      | 20                                   | 1.9               | 0.18              | $1.7 \times 10^{-3}$ |
| 1000 MW (100%)                                    | 40                                   | 3.8               | 0.36              | $3.4 \times 10^{-3}$ |

## PROTACTINIUM MONITORING TIMESCALES

Reactor startup,  
transition, &  
equilibrium

Fuel cycling

Closed fuel cycles with  
short-cooled partitioning  
(< 6 months)

Closed fuel cycles with  
long-cooled partitioning  
(3-5 years)

Open fuel cycles  
Interim & final waste  
storage (5+ years)



# SAFEGUARDS APPROACHES FOR FUEL CYCLE CASE STUDIES

## Solid fuel, no reprocessing

- Verify no reprocessing has occurred (continuity of knowledge)
- Verify  $^{233}\text{U}$  content using burnup codes, gamma confirmatory measurement
- Item-based safeguards

## Solid fuel, long-cooled reprocessing

- Verify no short-cooled reprocessing has occurred (continuity of knowledge)
- $^{233}\text{Pa}$  is sufficiently dilute in THOREX processing streams to allow termination of safeguards on these streams of  $^{233}\text{U}$
- Bulk material accountancy for  $^{233}\text{U}$

## Solid fuel, short-cooled reprocessing

- $^{233}\text{U}$  safeguards may require:
  - Verification of  $^{233}\text{Pa}$  inventory in multiple process streams
  - Detection of loss or diversion of 8 kg  $^{233}\text{Pa}$  in 1 month
  - Monitoring loss of protactinium to aqueous raffinate in THOREX processes
- Inventory measurements must compare to total  $^{233}\text{Pa} + ^{233}\text{U}$  from burnup codes
- Not cost-effective for commercial purposes

## Molten salt fuel, continuous reprocessing

- Fission products and potentially  $^{233}\text{Pa}$  removed continuously
- $^{233}\text{Pa}$  held outside of the neutron flux to decay to  $^{233}\text{U}$ , which is fed back into core
- $^{233}\text{U}$  safeguards require:
  - Verification of  $^{233}\text{Pa}$  inventory in multiple process streams
  - Detection of loss or diversion of 8 kg  $^{233}\text{Pa}$  in 1 month



## CONCLUSIONS & RECOMMENDATIONS

- If technology advances to allow spent fuel partitioning at short or no cooling, material accountancy approaches for fissile isotope precursors may be needed
- Definition for “short-cooled” fuels depends on the precursor.
  - “Short-cooled” is less than 6 months for Pa-233
- Concepts for material balance with fissile precursors:
  1. Aggregate accounting for fissile isotope and fissile precursor isotope pairs
  2. Material balance “in future”
  3. Flowsheet verification (e.g., similar for Am-241 and Np-237)
- Future work needed:
  - Diversion pathway analysis & diversion indicators for specific fuel cycles
  - More precise nuclear material inventory modeling, especially for molten salt reactors
  - Development of accountancy methods for priority areas

# Questions?

# Thank you

Contact: [euribe@sandia.gov](mailto:euribe@sandia.gov)