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Quantum Bits Live in a Sphere

Classical bit:
(bit)

-

e

Tail

™™

Prob. bit: {;' \
(p-bit)

+1 with probability p
-1 with probability 1-p

NS
— O 3
Quantum bit: -2 al+1) + p|-1) € C
. R L\. \ |[I|2-pr0babi|ity of +1
(qubit) > & |7|?-probability of -1
[0)+ 1)
"y

State space

{+1, -1}
L I
— |
o P 1

A>§
Cy

[0)+ 1) |
V2




How to describe a Generic distribution of
qubits?
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Classical and Quantum Combinatorial

"' Optimization
Classical

* Edges correspond to non-linear
functions on vertices

f= > @

(j>K)EE

* Taskisto find

mﬁax E,[f]

* Example Max Cut
f}k(l?j,l?k) = I?j -+ V) — ZUjUk

Quantum (2-Local Hamiltonian Problem)

Optimizing over tensor product
IFSGn - E;@m
Edge functions now linear, obj is the same

hjkp
(J=K)EE

hji has “non-trivial” part only on j and k:
hi=02QQ QI

Find largest e-value of exp. large matrix

from a local description

mpax E,[f] = mpax Tr




5‘ Motivation

Possible Energies for Physical systems

* Heisenberg model is fundamental for describing quantum magnetism,
superconductivity, and charge density waves. We consider
generalization of this problem

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.

[Image: Sachdev, arxiv:1203.4565]

Complexity Theory

e 2-Local Hamiltonian problem is QMA complete -> If we shouldn’t expect
to solve it, how well can we approximate it?

* Field of Classical Approximation Algorithms very developed. Very few
results giving rigorous approx. algs. for quantum problems.




" Approximation Algorithms and Ansatze

{hij}i=jyeE

Runs in poly time in n,
Alg(thij}) < bOY | .
> a provable guarantee independent of instance
A’]’TLCUC(H)

Classical Description
Of Quantum state

Y

* Unlike classical combinatorial opt. not clear what “kind” of description is best
* Ansatz- “kind” of quantum state the algorithm outputs.
 Example: Product State Ansatz

T+ ailXi + Y +viZ
B 2

* Analogy: Independent Coin Flips

Pi

* Qverall distribution of independent
variables can be specified with
marginals




Assumptions

Graph-Dependent [Bansal, Bravyi, Terhal, 077],

Assumption [Gharibian, Kempe, 127,
[Brandao, Harrow, ’16],
[Harrow, Montanaro, '17]

Quantum Max Cut [Gharibian, Parekh, ’19],
[Anshu, Gosset, Morenz, '20]
[PT 21] (x2)

Traceless [Bravyi, Gosset, Koenig, Temme,
'18]

Projectors [Hallgren, Lee, P. ‘20]
[This work]

|J.F

* No “universal” approximation algorithm: generalizes max ind. set
[Wocjan, Beth ‘03]
« Just like classical, people study 2-Local HP with assumptions
* For us: 2-Local terms are projectors,i.e. hy, = P, QI; QX - X 1,
* Assume further the rank of each h;; is the same

* 3 cases of interest corresponding to rank of P;;




" Our Contributions

Thm For bipartite traceless we get
2 In(1++2)
- 3m
Thm Ifeach h(;_, ;) = P jy @ I\, jy where rank(P) = k, there is
an approx. alg. obtaining factor:
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0.387 if k=1
a(k) = {0.585 if k =2
0.764 if k = 3

Thm If in addition each P is “strictly quadratic”, we obtain the

following approx. factors: Trivial (Random) Assignment:
0.467 if k=1 1/4if k=1
a(k) = {0.639 if k=2 a(k) = {1/2 if k=2
0.805 if k=3 3/4if k=3




" How Does the Approx. Alg. Work?

Classical Rounding-

Relax NP-hard optimization
problem

Use solution of relaxation to get
elementin [F}

Analyze loss in obj. from rounding

Quantum Rounding

Problem is exp. large SDP
Can we relax this to polynomially
large SDP?

Objective




o I Relaxation

My, xs=TrlX; X; o] ’f’_x'.\\
Mo vs=TrX, Y5 P 3 __f-——m,\
My, 23=Tr[i2 Zy Pl / 5 7‘\

2 f,_/
\‘é‘\ //rJ Mys xa=TrIX, X5 P]
)

: - MX4.Y5=Tr[X4 Ys Pl

1e : :
\P\Aﬂ- 25=Tr [24 ZE pl

P

 Define Moment Matrix M € C3"%3n
Mgjm = Tr[ omp] : o,n € {X,Y,Z}

* Pauli basis is complete, this description captures all 2-Local
statistics = Given only the moment matrix, we could calculate
the objective



"1 The SDPs

* Hence, could equivalently optimize over M:
max z Tr(C¢M) vIMv =Tr(T?p) =0
e

S.t.Mgjp = Tr(gjmp) «<— For non-imaginary entries
p € D(2M), M € R3X3n > (

* Haven’treally done anything at this point
* Equivalentto original SDP, merely represented 2-Local part redundantly
* (Can “forget” correspondence to get poly-sized SDP!

|- ¥ *

> e lzehe
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12 I The SDPs

* The catch? In SDP, marginals will be
globally inconsistent

* Otherwise, we would be solving a QMA-
hard problem!

* M may not even be consistent with a set
of 2-local marginals

* SDP we study forces with property with
additional variables

* Slight tightening of the 1t level of the
guantum Lasserre Hierarchy

[Lasserre ‘01]
[Pironio, Navascués, Acin, “10]

Obj
max Z Tr(C®M)
e
St.Mgjp = Tr(crjmp)‘c’cr,j, n,l
Mijij =1, Mijiy =0

T'r(pij) =1Vi,j
M= 0,p; = 0Vi,j
M € R3™51 symmetric
pij € C¥** Hermitian Vi, j




= I'\WWhat does the SDP give us?

* M*- optimal solution to SDP
* Cholesky decomposition-{v,;} such that M, ., = vgjvm.
» Statistics corresponding to a non-physical density matrix
* However, objective of M upper bounds optimal density matrix

* {vgj} represents unphysical statistics, can we round to a physical state
with these vectors? Maybe a Bloch vector?

* Rounding to Bloch vectors would guarantee “physical-ness”




« I "Hyperplane” Rounding

* Letr ~N(0,1). Ifwecouldtake 6,; = v4j -1

o E[(vg; )Wy 1)] = E[vgirrTvy] = vivy \

* We would get approx. factor 1! But this is unphysical, need to

normalize:
* Procedure v
* Takeqqj = vy T Vo,j x1 V1V mme Vo VoV,
. VgjT
* Normalize: ng = ot | ol lr
JZH (vyj1)? ] \
* Qutput: qx1qv1qz1 ax.d Yn Zn
p =1l (—HE";J Ui) | Nomalize Normalize

0419182 |Bxn 6,02,

dx1 “

Ox1 =
\/%%1 + ‘i’}zfl + fiél




1 ‘ Analysis

Evaluate the expected approx. factor edge by edge:

E [Tr (Z h, p) = Z E[Tr(h, p)]

E[Tr(h, p)] -
o If —— Ze] > a\for alle, then Y., E[Tr(h, p)] = @ X, Tr[M C€]

* Reduce edge to standard form which depends on the rank of h,

* Giventhis standard form, use Hermite polynomials to calculate the
expectation:
* f(2),g9(z) functions of normal r.v.s V' (0, I)
« =2E[f(2)g9(2)] = Z,u fuﬁu
* 0O, functionofr ~ N (0,1)



o I Future Work

* Optimizing proof methods? proven approximation factors are strict
lower bounds on performance of alg., we suspect it is possible to
prove actual performance with better techniques

e 1-Local vs. 2-Local? We suspect alg. has same performance when 1-
local terms are included

* Genuinely entangled Ansatz?

* Approximation alg. making crucial use of quantum circuit?



