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e-SWIR (1.7-3.0 mm) III-V Detector Absorber Materials

Type-II superlattices
 InGaAs/GaAsSb on InP
 InAs/GaSb on GaSb
 InAs/AlSb on GaSb

Issues:
 Carrier mobility
 Absorption coefficient
 Point defect density (G-R)

Ternary alloys
 Extended InGaAs on InP
 InPSb on GaSb

Issues:
 Mismatch defects
 Phase separation

Quaternary alloys
 GaInAsSb on GaSb
 InPAsSb on GaSb

Issues:
 Possible phase separation
 GaSb-related point defects
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This work:  Quaternary Alloys Lattice Matched to InAs

Start with InAs (rather than InAsSb)
 InAs is already almost in eSWIR

Add small amounts of AlAsSb or InPSb

AlInAsSb
 Less Al or Sb than alloy with same bandgap on GaSb
 Reduces likelihood of phase separation

InPAsSb
 Less P or Sb than alloy with same bandgap on GaSb

The tradeoff:  InAs substrate opaque in eSWIR
 Substrate removal required
 Even GaSb substrate removal required for SWIR
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Experimental Details

Growth by molecular beam epitaxy
 Hybrid solid (As,Sb) / gas (PH3) source system
 All epi lattice matched to InAs substrates

Etched-mesa nBn diodes
 100×100 to 600×600 mm2

 Shallow etch to AlAsSb barrier (left in place)
 No passivation

Material characterization
 X-ray diffraction
 Energy dispersive x-ray analysis (EDX)
 Electron channeling contrast imaging (ECCI)
 Photoluminescence (200 K)
 Time-resolved microwave reflectance (100 K)

Device characterization
 I-V, C-V
 QE: Front illumination, no AR coating
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Epi Characteristics

X-ray linewidths typically ~50 arcsec FWHM

PL similar to InAs for wavelengths > 2.8 mm

Minority carrier lifetimes
 InPAsSb comparable to InAs
 AlInAsSb has shorter lifetimes

Nominal 
Composition

Measured by EDX 200 K PL 
Wavelength (mm)

InPAsSb InP0.12As0.73Sb0.15 2.85
InPAsSb InP0.18As0.63Sb0.19 2.58

Al0.02In0.98As0.98Sb0.02 -- 2.99
Al0.02In0.98As0.98Sb0.02 -- 2.97

Al0.04In0.96As0.97Sb0.03 Al0.05In0.95As0.90Sb0.10 2.85
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Phase separation not detectable with ECCI6

Al0.06In0.94AsSb/InAs

InPAsSb/InAs

InPSb/GaSb

InPAsSb/GaSb

InPAsSb and AlInAsSb on InAs

Ga0.8In0.2AsSb/InAs

Other ~ 3 mm alloys
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Detector Dark Current Characteristics (lc ~ 2.85 mm) 7

Current density is unusually dependent on device size

InPAsSb has lower current density than AlInAsSb (for same cutoff wavelength)
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Dark Current Density Size Dependence8

Even largest devices have significant 
perimeter current

Perimeter current fraction greater for
 InPAsSb
 Shorter cutoff

Extrapolation non-physical for some devices

Material Cutoff 
(mm)

Largest 
Device 
(A/cm2)

Areal 
(A/cm2)

Perim. 
(A/cm)

AlInAsSb 2.89 6.6×10-7 3.4×10-7 4.6×10-9

InPAsSb 2.87 2.3×10-7 1.9×10-8 3.1×10-9

InPAsSb 2.55 2.5×10-7 -- 3.9×10-9

InAs 3.25 1.1×10-6 5.7×10-7 5.3×10-9
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Isolation/passivation less effective than in MWIR nBn Devices

Shallow-etch isolation effective in MW devices
 Areal component dominates total current

Barrier composition is only slightly different

No gross differences in residual barrier oxide
 Further studies in progress

Through-barrier etch does not help

Possible causes
 Differences in surface/interface pinning
 Operating T higher for eSWIR devices
 Isolation less effective at higher T?
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Dark Current Temperature Dependence and Benchmarking

Dark current activation energies somewhat smaller than absorber bandgaps

InPAsSb dark current activation energy does not increase with absorber Eg (for Eg>0.43 eV)

InPAsSb dark currents within 2x Rule 07 for cutoffs of 2.9 mm or longer
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Spectral Response and Quantum Efficiency

Sharp cutoff for longest-wavelength devices, softens for shorter wavelengths
 Cutoff at wavelength close to PL wavelength

External QEs 40-50% (at 0.35 mm shorter wavelength than cutoff)
 Should be improved by using larger-bandgap contact layers
 Very low turn-on bias
 Devices not AR-coated
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Summary and Future Directions

Low dark current and high QE obtained in InAs-based AlInAsSb and InPAsSb detectors
 Improvements relative to GaSb-based materials
 Dark currents comparable to Rule07 values for cutoffs as short as 2.9 mm
 InPAsSb dark currents lower than AlInAsSb
 No indication of phase separation over range of alloys investigated
 Perimeter currents or incomplete device isolation dominate small-device dark current

Future directions
 Investigation of dark current saturation at shorter wavelengths
 Development of better device isolation/passivation process
 Flip-chip bonding and substrate removal
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