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ABSTRACT
As I/O demand of scientific applications increases, identifying, pre-
dicting, and analyzing I/O behaviors is critical to ensure parallel stor-
age systems are efficiently utilized. This paper investigates I/O behav-
ior and performance variability on a large-scale high-performance
computing (HPC) system using novel methodology that identifies
recurrent job I/O behaviors. We show how our unique methodology
can be used to perform temporal and feature analyses to detect inter-
esting I/O patterns in production HPC systems, and its implications
operating/managing a state-of-art system.

1 INTRODUCTION
Large-scale high-performance computing (HPC) systems have been
known to suffer from I/O performance bottleneck and variability
as the applications that run on them perform a large amount of
shared distributed I/O, be it in the form of data analysis output,
loading data visualization applications, checkpointing and restarting
an application state, and reading and writing large machine/deep
learning models [4, 11, 15, 27, 33, 39, 51]. The increase in the com-
plexity of large-scale workloads and file systems, only exacerbates
the I/O bottleneck and variability condition [3, 9, 24, 29]. In fact,
as exascale computing projects emerge, the HPC community has
become more aware of the importance of investigating I/O trends
extensively [3, 8, 23].

Thus, characterizing I/O trends of an HPC system has become
critical in scaling I/O-intensive scientific applications on modern
large-scale HPC systems. While previous studies have character-
ized and analyzed I/O workload performance and behavior on HPC
systems, their analysis has been based on traditional I/O beliefs.
These beliefs include HPC scientific workloads perform unique and
repetitive I/O, have large and periodic I/O bursts, and I/O charac-
teristics are similar for read and write I/O [6, 9, 27, 34]. However,
our detailed I/O behavior study on large-scale production HPC sys-
tems reveals that some of these conventional beliefs might no longer
be applicable. We develop and present a methodology to identify
and quantify emerging I/O behaviors. In this paper, we make the
following contributions:

(1) We provide a machine learning-based clustering methodology
to detect I/O-intensive applications and their unique, yet repetitive
I/O behaviors. We demonstrate the use of our methodology in identi-
fying different I/O characteristics and mitigating I/O challenges.

(2) We find that I/O-intensive applications have more unique read
behaviors than write, but write behaviors are more predictable. This
makes it easier for I/O schedulers to predict, manage, and absorb

write I/O bursts. However, systems operations administrators should
devise read I/O management policies using our methodology.

(3) Conventional beliefs on HPC applications being repetitive
hold true, but an application may have multiple unique I/O behav-
iors. We show these unique behaviors last for a short while and may
overlap with each other for the same application. We suggest refrain-
ing from scheduling policies that rely on inter-arrivals regularity for
I/O scheduling as it can lead to suboptimal outcomes.

(4) Performance variation has been critical for HPC I/O [23, 24,
27, 34]. We focus on understanding I/O characteristics that cause
or worsen performance variability. We find that runs with similar
I/O behavior observe significant performance variation, especially
for read I/O. System operators should note that some applications
observe more performance variation than others. The mitigation
strategies should consider read and write I/O separately using our
methodology even for the same application.

(5) For jobs that run repetitively, but perform a low amount of
I/O, we suggest they be carefully managed by HPC centers in terms
of performance variation mitigation. We show these applications are
prone to observing the highest amount of variation which results in
the most number of complaints.

(6) We find that to encourage and cultivate best I/O practices,
users need to be educated about the behavior that having fewer
files can help deliver more stable performance. One solution is to
consolidate I/O data in one shared file, as opposed to having multiple
unique files. However, the trade-off between observed performance
variation and file striping needs to be carefully considered by the
system operators.

(7) Our analysis reveals that clusters that run on weekends tend
to observe some of the highest performance variations. This can be
addressed by providing incentive to users to run I/O intensive jobs
on different days.

(8) Our analysis shows that there are separate and disjoint time
zones during which different applications experience high and low
performance variations. System administrators can leverage our
clustering methodology to detect and manage periods of high perfor-
mance variation without performing any additional instrumentation
or probing and without deploying new high-overhead ML-based
prediction models.

We will be making our developed toolset available as a package so
that other HPC systems can easily perform similar studies and test
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the wider applicability of presented findings using this systematic
methodology.

2 BACKGROUND AND METHODOLOGY
2.1 Overview of the System
This study is based on a production-level system, Blue Waters. Blue
Waters is a Cray XE/XK based supercomputer with approximately
27,000 compute nodes, with reported peak performance of over
≈ 13 Pflop/s. Blue Waters supports a wide variety of science domain
– major applications that routinely run on this system include but
are not limited to geospatial, physics, astronomy, material science,
uncertainty quantification, machine learning, and weather model-
ing domains. The system features three Cray Lustre parallel file
systems- Lustre Home, Lustre Projects, and Lustre Scratch. Home
and Projects have 2.2 PB of storage with 36 Lustre Object Storage
Targets (OSTs) each, while the Scratch system has 22 PB of stor-
age with 360 OSTs. The total raw storage in the file system is 34.0
PB, including 25.0 PB of disk storage, with a I/O bandwidth peak
performance of 1 TB/s.

2.2 Data Collection
In this study, we utilize a rich I/O data set collected on Blue Waters[46].
The data collection and analysis period for this study is approxi-
mately six months (Jul-Dec 2019). Our study focuses on job runs
using the POSIX (Portable Operating System Interface) I/O interface
since the vast majority of I/O is done using POSIX (≈ 90.4%) on
this system. This study considers ≈ 150 thousand runs for analysis,
each of these runs have complete and accurate I/O information cap-
tured by Darshan. The selected runs provide the I/O characteristics
of most of the I/O-dominant workloads on the system.

Darshan is the primary I/O monitoring tool used to monitor and
collect the I/O data for application runs. Darshan was deployed on
Blue Waters because it provides application-level I/O tracing capa-
bility with low-overhead suited for production usages. Due to its rich
collection of data and light-weight deployment, Darshan has been
used to perform insightful analysis of I/O trends and characteriza-
tions [11, 24, 29, 35]. However, we acknowledge that Darshan does
not capture server-side information (e.g. OST-level monitoring. com-
pute and storage overhead, etc.) which is not required for this study
and cannot be easily correlated with application-level behavior.

We noticed that the same application displayed unique read and
write I/O behavior (e.g., read from the same shared file, but write to
multiple different files). Previous works note this divergence [36, 42].
Therefore, when we study the repetitive I/O behavior from the same
application and its corresponding performance variation, we consider
read and write I/O separately. Furthermore, we carefully consider
what constitutes an application. The same executable might be run
by multiple users, but they might exhibit different I/O behavior due
to users inputting potentially varying parameters or using different
functions of the executable. Therefore, we consider them as differ-
ent applications. Throughout our analysis, we distinguish between
applications by providing a unique executable name and user ID
pair.

2.3 Grouping Applications With Similar I/O
Why are we grouping application runs? In our study, we applied a
clustering methodology to group applications. The motivation behind
clustering runs is to identify the repetitive pattern of applications
with similar I/O behavior. Using clustering methodology provides
us the statistical confidence to differentiate between runs of the
same applications with different I/O characteristics. Furthermore,
clustering methodology allows us to identify runs with similar I/O
behavior and perform analysis on their observed I/O performance.

What are the inputs and outputs of our clustering methodology?
The inputs to our clustering methodology are I/O features collected
from the Darshan logs of all application runs. At the end of clus-
tering, we output clusters that consist of runs that belong to the
same application and have similar I/O behavior. As noted earlier, the
clusters are different for read and write I/O behavior.

Clustering process details. Using the Darshan tool, we collect I/O
metrics of the runs, normalize the metrics, then cluster using hier-
archical clustering from the scikit-learn API [38]. Our clustering
methodology uses information about the I/O behavior of each run –
the major I/O characteristics include I/O amount, I/O request size
histogram, number of shared and unique files. The I/O amount done
in a run is given in bytes. The I/O request sizes are represented in a
histogram format such that the number of requests done in a certain
range (e.g. 100-1K bytes) is provided. A total of 10 I/O request size
ranges are given which are used as separate clustering metrics. A
file accessed during the run is categorized as shared if more than
one rank accesses it and unique if it is only accessed by one rank.
A total of thirteen metrics from the Darshan logs were found to be
most relevant for clustering and affected the clustering outcomes,
and hence, those were used as the input features for clustering.

As a part of preprocessing the data for clustering, we normalize
the parameters such that the distribution of the values have a normal
distribution with an expected value of 0 and standard deviation of 1,
or µ = 0 and σ = 1. This is effective in accounting for the varying
I/O behaviors in the applications. Since the clustering algorithm,
hierarchical clustering, uses Euclidean distance to cluster the data,
normalization prevents the algorithm from being partial to an input.
This is due to Euclidean distance being sensitive to the scale and
magnitude of parameters [32]. Hence, as the I/O metrics numerically
scale differently, normalization is necessarily applied. Additionally,
I/O metrics are weighted differently when compared to the same I/O
metric in other runs in the respective clusters. Therefore, normalizing
the I/O metrics avoids inter- and intra-application clustering biases.

Next, we cluster the read and write runs using agglomerative
hierarchical clustering. This technique recursively merges pairs of
clusters based on a linkage distance and forms a varying number
of clusters per application instead of a fixed number. We chose
this clustering methodology as it clusters based on a set threshold
of similarity [41]. The 13-dimensional, as 13 parameters are used,
Euclidean distance between the I/O metrics of each run is used for
linkage distance. Agglomerative hierarchical clustering can also be
done by clustering into a certain number of clusters for each group,
but we used distance threshold in order to allow groups to cluster
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Figure 1: Visual representation of the clustering methodology. Dif-
ferent colors represent different I/O behaviors.

into different numbers of clusters based on how many distinct I/O
behaviors exist within them.

After the clusters are formed, we set a threshold for the minimum
number of runs in a cluster required for a cluster to be included in our
study. While other studies have used lower thresholds [16, 35], we
instated a higher threshold to ensure that our study draws statistically
significant conclusions (e.g., clusters with only a handful runs are
not very useful for learning the common behavior of applications).
However, setting a very high threshold can automatically eliminate
most clusters. To balance between competing trade offs, we use a
threshold of forty runs in a cluster since we found that it was the
minimum number of runs required to achieve statistical significance
(number of runs per cluster) and it also resulted in a sufficient number
of read/write clusters (497 read clusters and 257 write clusters).
Higher thresholds can be chosen and similar conclusions will be
obtained, but we aimed at using the maximum number of clusters
possible while maintaining statistical significance.

Summary of frequently used terms and definitions. "Applica-
tion" refers to a unique pair of executable and user ID. Applications
are run multiple times during the course of this study. Application
“runs” with similar I/O behavior – as determined by our clustering
methodology based on the I/O and execution characteristics (e.g.,
Darshan tool) – are grouped together. These groups are referred to as
“clusters”. Note that an application can have multiple clusters. Each
cluster can have a different number of “runs” and may span over
different times. That is, one cluster can have 200 runs spanning over
three months while another cluster with 500 runs may span only two
weeks. Since runs within a cluster have similar I/O behavior, they
are expected to achieve similar performance – although that may
not always be the case. Each application can have multiple active
clusters at a given time and the temporal density of runs within a
cluster may be different. These concepts and terms are summarized
visually in Fig. 1.

2.4 Workloads
After our clustering processes, our study is done with 497 read
clusters and 257 write clusters with ≈ 80 thousand runs for read
clusters and ≈ 93 thousand for write clusters. The runs included in
our study used the executables Vasp, Quantum Espresso (QE),
MoSST Dynamo (mosst), SpEC, and Weather Research and
Forecasting Model (WRF). As previously mentioned, applica-
tions are executable separated by the user running the executable.
Note that applications are represented throughout this paper by an ex-
ecutable short-hand along with a number that distinguishes between
users (e.g. vasp0, vasp1).

The type of workloads in our study include geospatial, weather
modeling, quantum-mechanical simulation, and benchmark applica-
tions. Note that our study does not explicitly include the full extent
of workloads on Blue Watersbecause they may not be run repeatedly
enough and may not perform significant I/O. The variety of work-
loads included in our study capture the representative I/O behavior
on the system.

2.5 Result Metrics
In this section, we lay out the frequently used metrics in our analysis.

I/O performance. It is as reported by the Darshan tool in terms of
I/O throughput (amount of I/O performed per unit time).

Coefficient of Variation (CoV). When quantifying the relative vari-
ation of metrics within clusters, we used Coefficient of Variation
(CoV). This statistical measure normalizes the standard deviation,
σ , to the average, µ , given I/O behavior exhibited in each cluster.
CoV provides a standardized means of quantifying variation, the
dispersion of data about the mean, and is given as a percentage with
the following formula:

CoV =
σ

µ
∗100

Z-score. While CoV gives a standardized measurement to compare
cluster behavior, z-score provides a standardized means to compare
job behavior. The z-score for each job provides how many standard
deviations a given metric is from the average of the jobs in its respec-
tive cluster. This enables us to identify I/O trends by quantifying the
discrepancy of individual job I/O behaviors in relation to jobs with
similar characteristics. A z-score, Z, with −1 < Z < 1 is within one
standard deviation of the metric average and means the given job I/O
behavior does not vary significantly from others in the same cluster.
Additionally, a z-score with 1 < |Z|< 2 displays high deviation and
|Z|> 2 should be considered an outlier of the data distribution. The
following is the formula for z-score:

Z =
x−µ

σ

Cumulative Distribution Functions (CDFs). We use CDF to show
the cumulative distribution of a metric. Vertical draws are added to
show the median values of the metrics.

Box plots and violin plots. These plots are used to show the density
and distribution for values of a metric in a vertical format. In each
violin in the violin plots, the median is given by a solid horizontal
line while the 25th and 75th percentile are indicated with horizontal
dashed lines. In each box in the box plots, the median is also given
by a solid horizontal line while the 25th and 75th percentiles are
represented by the ends of the box.

3 INVESTIGATING GENERAL TRENDS IN
JOB I/O BEHAVIOR

In this section, we present the general I/O behavior results of differ-
ent applications and their read and write clusters.
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Figure 2: Write clusters have more runs than read clusters: the
median size of a read cluster is 70, and that of a write cluster is 98.

3.1 Characterizing Cluster Behaviors
We begin by looking at the characteristics of the read and write
clusters generated using our clustering methodology. We ask the
following question:

RQ 1. Do applications exhibit different repetitive I/O behavior in
terms of read and write?

Divergence in Read and Write I/O Behaviors. Interestingly, our
methodology produces almost twice the number of read clusters as
write clusters – that is, the read I/O behaviors are more unique in
number (hence, more clusters). More than 70% of the applications
demonstrating more distinct read behaviors than write behaviors. For
instance, the vasp0 application has 406 read clusters, but only 138
write clusters. One could hypothesize that this trend is an artifact
of that there are more read runs than write. But, on the contrary,
our study covers ≈ 13k more write runs than read. The number of
unique read I/O behaviors are relatively more. But, how frequently
do these behavior occur (i.e., number of runs within a cluster)?

Fig. 2 shows a cumulative distribution function (CDF) of cluster
sizes, i.e., the number of runs in the read and write clusters. The
vertical lines show the corresponding medians. The medians show
that there are generally more write than read runs in the clusters –
implying that write behavior are more repetitive than read behavior,
although the number of unique write behaviors are lesser.

Write clusters have a median of 98 runs, while read clusters have
a median of 70 runs. Furthermore, the 75th percentile is 288 for
write clusters, but only 111 for read clusters. For example, appli-
cation vasp0 has a median read cluster size of 70 and a median
write cluster size of 182. However, this behavior varies from one
application to another. In Fig. 3, the median read and write cluster
sizes of an application are shown. Additionally, Table 1 categorizes
the applications by whether their clusters typically experience more
read or write runs. We observe that, although the number of runs
in write clusters tends to be higher than read clusters for several
applications, this is not always the case. For example, application
mosst0 has a median read cluster size of 417, but a median write
cluster size of 193. Nonetheless, in general, applications tend to have
more distinct read behaviors (more clusters), and more consistent
write behaviors (more runs per clusters).

Lesson Learned 1. I/O-intensive applications tend to have more
unique read behaviors than write ones, but write behaviors are more
repetitive and hence, more predictable.
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Figure 3: While on average, write clusters tend to have more runs
than read clusters, many applications do not exhibit this behavior.

Operation with a Higher Median Number of Runs by Application
Read mosst0, QE0, vasp1, spec0, wrf0, wrf1
Write vasp0, QE1, QE2, QE3

Table 1: The I/O operation, read or write, that has a higher median
number of runs in the clusters of an application.
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Figure 4: (a) 80% of read clusters span <10 days and 40% of write
clusters span <10 days. (b) The median frequency of runs is 58 runs
per day for read clusters and 38 runs per day for write clusters.

Implication. This makes it easier for I/O schedulers to predict, man-
age, and absorb write I/O bursts. On the other hand, systems oper-
ations administrators should devise read I/O management policies
using our clustering methodology to ensure that unique read I/O
characteristics get detected and carefully handled to reduce I/O per-
formance degradation and variation, which are well-documented
phenomena on shared HPC storage systems [12, 25, 35].

We now look at how the cluster behaviors vary in time for different
applications. Recall that runs within a single cluster can occur over
time and runs within a single cluster represent the same I/O behavior
repeating itself over time. That is, we ask:

RQ 2. How long does a typical repetitive I/O behavior last? How
frequently do repetitive I/O behavior runs of the same type occur?

Temporal Spans of Clusters. First, we study the “time span”, which
is the amount of time between the start of the first run in a cluster to
the end of the last run in the cluster. Fig. 4(a) shows the CDF of the
time spans of clusters. We observe that write clusters tend to span
longer than read clusters — that is, repetitive write I/O behavior
tends to last longer than repetitive read behavior on average.

The median read cluster spans ≈ 4 days, while the median write
cluster spans ≈ 10 days. Over 80% of read clusters span <10 days,
whereas only 40% of write clusters span 10 days. In general, the
cluster spans are short even though our study covers a time span of
six months. For example, the median time spans of the clusters of
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Figure 5: Different read clusters of the vasp0 application have dif-
ferent inter-arrival patterns, with some clusters having more periodic
and less irregular behavior than others.

the four applications with the most number of clusters are between
8 and 10 days. In addition, because write runs tend to span longer,
Fig. 4(b) shows that write runs in a cluster occur at a lower frequency
than read runs, in spite of write clusters tending to have more runs.
Even though read clusters tend to have fewer runs, the runs in the
clusters tend to occur more frequently. This indicates that unique
I/O behavior of applications, especially read I/O behavior, lasts for
a relatively short period of time, making it difficult to establish
long-term (months) or even medium-term (weeks) patterns.

Lesson Learned 2. Long-held beliefs about HPC applications be-
ing repetitive hold true, but a single application may have multiple
unique I/O behavior. But, in contrast to conventional wisdom on
HPC I/O [10, 13, 34, 51], we find unique I/O behaviors of typical
repetitive HPC applications do not last long-term. Surprisingly, this
is the case even for runs within write clusters, which have more runs.

Implication. Designing I/O policy based on infrequent or “once
in a while” profiling of an application’s I/O behavior needs to be
revisited, and a more dynamic approach needs to be adopted. This is
because applications, while repetitive, change their behavior rather
quickly. Stereotyping application I/O behavior toward I/O scheduling
decisions can lead to suboptimal outcomes [4, 14, 17, 43].

Periodic Behavior of Runs. Next, we look at the temporal behavior
of runs within a cluster. To motivate the analysis, in Fig. 5, we pro-
vide a visual representation of the normalized temporal distribution
of run start times (vertical lines) of some clusters of the vasp0 appli-
cation. The x-axis is normalized to each cluster’s time span for easier
comparison. We observe that runs of different clusters of the same
application can have very different inter-arrival patterns, even though
they are run by the same user. For example, in cluster 5 we have a
few close-by runs in the beginning and then no runs until the end.
In cluster 3, we have several bursts of runs at regular intervals. In
cluster 1, the application runs are almost randomly distributed from
the first run to the last run. Note that we found that these behaviors
are not correlated with the number of runs as all six clusters in this
example have the same number of runs. In fact, we found that these
behaviors are best correlated with the time a cluster spans (with a
Pearson correlation coefficient of 0.75 in our example clusters).

In order to quantify these differences in behavior, we calculate
the coefficient of variation (CoV), which represents the standard
deviation of the inter-arrival times of runs within a cluster as a
percentage of the mean inter-arrival time. The higher the CoV, the
more irregular the inter-arrival times. To best understand this CoV,
we plot it as a function of the time spans of different clusters in
Fig. 6. One may expect that clusters that span longer times may
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Figure 6: In general, the coefficient of variation (CoV) of inter-
arrival times of runs in clusters increases with increasing time spans.
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Figure 7: Applications have different behaviors in terms of runs
from clusters with different I/O behaviors running simultaneously.

exhibit more irregularity in run inter-arrivals as inter-arrival patterns
may change over a longer time period. This is in fact true. The figure
shows that for both read and write clusters, in general, the CoV
of inter-arrival times increased with the time span of the clusters.
However, this CoV is quite high even for clusters spanning just a
few days. For example, the median CoV of inter-arrival times is
514% and 506% for read and write clusters spanning 1-2 weeks,
respectively. Thus, in general, application I/O clusters tend to have
irregular inter-arrival times regardless of how long the clusters span.

Lesson Learned 3. Read and write runs within a cluster are likely
to have stochastic inter-arrival times regardless of the cluster span.
Even clusters belonging to the same application and user may have
different inter-arrival patterns. Unlike previous studies [2, 7, 51],
our findings show that no assumption can be made about the inter-
arrival patterns of different I/O behaviors of different applications.

Implication. I/O behavior could be repetitive, but arrival patterns of
runs belonging to a unique behavior can not be predicted trivially.
System resource managers should refrain from policies that rely on
regularity in inter-arrivals for I/O scheduling.

So far we have looked at the characteristics of clusters individ-
ually, next we study how they interact with each other temporally.
A related inquiry is to understand how clusters (i.e., unique I/O
behaviors) overlap with each other. In other words,

RQ 3. Can applications have multiple unique I/O behaviors active at
the same time? Or, does one unique behavior (cluster) mostly start
only after a previous one has finished?

Temporal Overlap of Clusters. In order to understand if applica-
tions express multiple unique I/O behaviors simultaneously, we look
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Figure 8: In general, an application can have overlapping clusters.

at the temporal concurrency of clusters from the same application.
Fig. 7 shows the percent of clusters more than 50% with a given
range of other clusters for the four applications with the most clus-
ters. We present this in terms of percentage of clusters in order to
normalize across applications and read or write operations, as each
application and operation have varying numbers of clusters. We
observe that applications QE0 and QE1 have temporal concurrency
for read and write operations as a majority of clusters overlap with
most of the other clusters in the application. On the other hand,
application mosst0 experiences less temporal concurrency for its
write and, most notably, read clusters. This indicates that some write
I/O behaviors occur concurrently, while read I/O behaviors occur
at strictly unique time periods for this application. We also observe
that application QE1 has read clusters that overlap with all other
read clusters from the application. Fig. 8 shows the overlap across
all applications: in general, applications tend to have overlapping
clusters as the majority of clusters do, in fact, overlap with at least
one other cluster.

Lesson Learned 4. A widely-held belief is that HPC applications
running on an HPC system express a unique I/O behavior, at least
short-term [12, 24, 34]. However, our study shows that applications
can express numerous I/O behaviors in the same time span.

Implication. If a user experiences performance variation when run-
ning the same application multiple times simultaneously, our cluster-
ing methodology can be used to pinpoint the differences in the runs,
since although the user may expect similar performance but these
runs might belong to different unique behavior (i.e.,clusters). Hence,
the user’s expectation may not be well founded and our method-
ology uncovers that and could be used for better troubleshooting
experience with the users.

4 INVESTIGATING TRENDS IN I/O
PERFORMANCE VARIABILITY

In this section, we start by characterizing the performance variabil-
ity characteristics leveraging our clustering methodology and the
insights gained from the repetitive behavior analysis in the previous
section. Then, we study how different factors such as the number of
runs, time span, and I/O amount affect the performance variation.
Thereafter, we investigate the I/O and temporal characteristics that
differentiate the clusters with the highest and lowest performance
variations. First we ask,

RQ 4. Do runs belonging to the same cluster (i.e., similar I/O be-
havior) experience different I/O performance?

Performance variations within a cluster. Recall that runs within
each cluster exhibit similar I/O behaviors based on multiple distinc-
tive I/O characteristics captured by Darshan (Sec. 5), and hence, our
clustering methodology clusters them together. Two runs exhibiting
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Figure 9: Runs within a cluster observe significant performance
variation (CoV), especially for read clusters.
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Figure 10: The I/O performance CoV CDFs of the four applications
with the most number of clusters show high CoVs. The CoV for read
clusters is notably higher than write clusters for each application.

similar I/O behaviors but run by different users and/or instances of
different applications are put in different clusters.

Ideally, one may expect that runs that exhibit similar I/O behaviors
(empirically less than 1% variation for all I/O characteristics) should
experience similar I/O performances. However, Fig. 9 reveals that
this is not true on our production system. Runs within the same
cluster observe significant coefficient of variation (CoV, the standard
deviation as a percent of the mean, > 10%), even though these runs
belong to the same application and are run by the same user.

While the magnitude of the performance variation is somewhat
surprising, this trend by itself is not unexpected. Due to a variety
of reasons, HPC applications may observe performance variation
across their runs. However, a revealing finding is that performance
variations across runs within the same cluster are almost consistently
higher for read clusters than write clusters. The median CoV for read
clusters is 16%, but 4% for write clusters. Applications performing
similar read I/O behavior are likely to experience higher performance
variation. Later in this section, we investigate different contributing
factors that affect or are correlated with performance variation.

However, the first natural inquiry is whether this aggregate be-
havior is true only for some applications or for all applications.
Fig. 10 confirms that these findings are indeed true across different
applications, although the magnitude of performance variation and
asymmetry between read and write performance variation may vary
according to the application.

We note that the high amount of observed performance variation
is not due to a methodological pitfall (e.g., a permanent performance
change due to algorithmic improvement in application code being
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Figure 11: The performance CoVs of (a) read clusters and (b) write
clusters do not change significantly and consistently with the cluster
size (number of runs in the cluster).

mistakenly treated as performance variation). These variations are
uncorrelated with chronological time across applications with differ-
ent I/O characteristics.

Lesson Learned 5. Runs within the same cluster (i.e., runs with
similar I/O behavior) observe significant performance variation
and the magnitude of variation is higher for read I/O. These trends
are true consistently across different applications. While previous
studies have observed I/O performance variation on production
HPC systems [4, 11, 15, 24, 27, 29, 51], we show that read and
write I/O are not equally susceptible to variation.

Implication. System operators and user outreach teams should be
aware that some applications (and their read I/Os) typically observe
more performance variation than others. The mitigation strategies
should consider read and write I/O behavior separately even though
these runs might be coming from the same application and user.

Next, we investigate the performance variation of clusters based
on their other characteristics such as number of runs in the cluster
(size), time span of the cluster, and average amount of I/O performed
by a run in a cluster.

RQ 5. Does performance variation correlate with number of runs in
the cluster (size), time span of the cluster, and I/O amount?

Performance variations and cluster characteristics (size, span,
and I/O amount). Fig. 11 shows the performance variation for dif-
ferent clusters grouped by their cluster size (i.e., number of runs
in the cluster). We make two observations. First, as the cluster size
increases, the performance variation may appear to increase in some
cases, but the trend is not consistent. This indicates that simply be-
cause an application was run a number of times with similar I/O
behavior does not automatically imply that it has a higher likeli-
hood of experiencing a high performance variation. To confirm this,
we performed a statistical test. The Spearman coefficient between
cluster size and performance CoV is only 0.40 for read clusters
and -0.12 for write clusters; this is a weak correlation. Second, we
observe that irrespective of the cluster size, runs in a read cluster
experience higher performance variation than write runs. This aligns
with our previous finding, and reaffirms that this behavior is present
in different types of read clusters of different sizes.

The previous finding naturally leads us to ask: is the performance
variation correlated with the time span of a cluster? Recall that the
cluster size simply refers to the number of runs within a cluster, these
runs may be temporally spaced out in time or clustered in time. Time
span of a cluster refers to the start of the first run in the cluster to
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Figure 12: The performance CoVs of (a) read clusters and (b) write
clusters generally increase with the time spans of the clusters.
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Figure 13: The performance CoVs of (a) read clusters and (b) write
clusters generally decrease with the increase in the amount of I/O of
the runs in the clusters.

the end of the last run in the cluster. Fig. 12 shows the performance
variation for clusters with different time spans. We observe two inter-
esting trends. First, read clusters typically have higher performance
variation than write clusters for all clusters spanning different time
periods — from less than one day to 3-6 months. Second, both types
of clusters tend to observe higher performance variations if the clus-
ters span longer, especially read clusters. These results indicate that
when applications are run with similar I/O behavior, they tend to
observe higher performance behavior over longer time spans. This
is because there is a higher probability of different kinds of interfer-
ence from different applications and the effects of system software
and hardware upgrades.

Next, Fig. 13 shows the performance variation for clusters with
different I/O sizes. The I/O amount per cluster is calculated as the
average I/O performed by each run in the cluster (runs within a
cluster have similar I/O amounts as a result of the clustering method-
ology). These results reveal two interesting trends: (1) Consistent
with our previous findings, the read clusters observe more perfor-
mance variation for any given I/O amount bin. (2) Runs with lower
I/O amount tend to experience higher variation. For example, the
median performance CoV for read clusters with less than 100MB is
26%, it is 14% for read clusters with more than 1.5GB. Similarly, the
median performance CoV for write clusters with less than 100MB
is 11%, while the same for write clusters with more than 1.5GB
is 4%. Clusters lower I/O amount tend to spend relatively smaller
amounts of time on I/O and hence, are more prone to be affected by
transient interference from other applications, leading to a higher
performance variance.

Lesson Learned 6. Our results show that while the number of runs
in a cluster does not have a significant impact on the performance
CoV of the cluster, the performance CoV does generally increase
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Figure 14: Along with the I/O amount, the number of shared and
unique files used for I/O also affect the performance CoV of clusters.

with the increase in the time span and decrease with the increase in
the I/O amount.

Implication. The I/O of applications that run repetitively, but per-
form a low amount of I/O, needs to be carefully managed by HPC
centers in terms of performance variation mitigation. These appli-
cations are prone to observing the highest amount of variation and
resulting in the most number of complaints. As a mitigation recom-
mendation, the applications could be encouraged to perform their
I/O to fewer storage targets and aggregate their I/O phases until they
have a larger sum of I/O to perform (their computer and I/O phases
might be too short).

The general performance variation characteristics across all clus-
ters revealed interesting trends. To dig deeper, next we study the
differences in behaviors of clusters with the highest and lowest
performance variations to help discover the factors that affect perfor-
mance variation.
Comparing Clusters with High and Low Performance Varia-

tion. To make the analysis simpler, we consider high and low and
top 10% and bottom 10%, respectively. While the 10% threshold
is configurable, we chose this threshold because it allowed us to
perform our analysis on a statistically significant number of clusters
and also capture sufficiently wide-behavior, without being affected
by the clusters which show mediocre performance variation.

In particular, we consider all clusters from all applications and
identify the 10% clusters that experience the most performance vari-
ations (top 10%) and the least performance variations (bottom 10%).
Note that we are purposely removing the application-user identifier
from the clusters to understand if clusters exhibiting exceptionally
high/low performance variation have temporal or spatial features
that are common across applications. We start our analysis by eval-
uating the general I/O characteristics of the clusters in the top and
bottom 10% of performance CoVs. In particular, we ask:

RQ 6. How do I/O characteristics differ between clusters that ob-
serve highest and lowest performance variation?

Fig. 14 shows boxplots of I/O amount, number of shared files, and
number of unique files of the high- and low-CoV clusters. We make
several observations: (1) As expected, the top 10% high-CoV clusters
have a much smaller I/O amount for both reads and writes, compared
to the bottom 10% low-CoV clusters. This is consistent with our
finding in Fig. 13, which shows that higher I/O amount results in
lower performance CoV. (2) More surprisingly, low-CoV clusters
tend to exclusively have only shared files (file is shared among

0

2000

4000
Perf CoV Percentile

Bottom 10%
Top 10%

Mo Tu We Th Fr Sa Su
0

2000

4000
Perf CoV Percentile

Bottom 10%
Top 10%

Day of Week

N
um

be
r

of
Ru

ns

(a) Read

(b) Write

Figure 15: The runs in the read and write clusters that experience
that highest variation in performance tend to run on the weekends.

all the ranks of the applications) and no unique files (each rank
performs I/O to its own file). On the other hand, high-CoV clusters
tend to read from many unique files. Having multiple unique files
requires making a multitude of metadata requests to the metadata
server, which tends to be a service bottleneck in the I/O pipeline as
it is a single server shared across all files and applications. Thus,
the number of files greatly affects the I/O performance CoV. Note
that we also studied other I/O characteristics such as the number
of different I/O requests sizes, but found no significant difference
between high- and low-CoV clusters for those.

Lesson Learned 7. On this production cluster, our methodology
revealed that along with the I/O amount, I/O characteristics such as
the number of shared and unique files can be useful in identifying
applications with high performance variations.

Implication. This finding emphasizes that, to encourage and culti-
vate best I/O practices, users need to be educated about the behavior
that having fewer files can help deliver more stable performance. To
get around this issue, one solution is to consolidate I/O data in one
shared file, as opposed to having multiple unique files. Note that this
does not necessarily lead to limiting the I/O parallelism as a shared
file is still striped across multiple storage targets. However, there
is an interesting trade-off between observed performance variation
and file striping – that needs to be carefully considered by the HPC
center operators.

Next, we examine the temporal characteristics of high-CoV and
low-CoV clusters. In particular, we ask:

RQ 7. Is I/O performance variation correlated with day of the week,
hour of the day, etc.?

Fig. 15 shows that higher performance variation is more likely
to occur on the weekends, although not always. This trend is true
for both read and write clusters. For example, the number of runs
(read and write combined) belonging to the top 10% performance
variation clusters on Fri-Sun is ≈ 11 thousand, while the same num-
ber is only ≈ 7 thousand for runs belonging to the bottom 10%
performance variation clusters. Additionally, we observe that jobs
launched during weekends do notably more I/O than during week-
days. This is because on many weekends, users tend to launch long-
running I/O-intensive jobs to be finished during the weekend for
post-processing/analysis in the following week. While not an uncom-
mon behavior among many scientists, such behaviors can artificially
induce more performance variation than normal. This is evident in
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Figure 16: The median z-score of I/O performance of (a) read runs
and (b) write runs decreases during the weekend days.

our data as the total amount of I/O increases an average of 150% on
Saturday and Sunday.

The previous observation leads us to ask: “how does the higher
performance variation on weekends affect the average observed
performance on weekends?”. Surprisingly, we found that weekends
also exhibit consistently lower average performance. In Figure 16,
each run’s performance is compared to runs within the same cluster
by calculating the z-score of the performances in each cluster. The
z-score is calculated on a per-cluster basis as the runs in each cluster
have similar I/O behavior and use the same application. If a run has
a low z-score, it indicates that performance is worse for that run in
comparison to runs with similar I/O behaviors. We observe that runs
tend to experience worse I/O performances when they are run on
Fridays, Saturdays, or Sundays. This trend is especially strong on
Sundays. In fact, for runs in write clusters, the median performance
on Sundays is almost one standard deviation away from the average
performance z-score of zero. We did a analysis for “time-of-the-
day” and found that high CoV clusters and low CoV clusters do not
exhibit different trends. On average, high CoV clusters are as likely
to occur at a specific hour of day as low CoV clusters. Similarly,
performance z-score distribution was similar across all hours of the
day – suggesting that running an application during certain hours
did not specifically make it more prone to lower performance.

Lesson Learned 8. Our analysis reveals that clusters that run on
weekends tend to observe some of the highest performance varia-
tions. This is correlated with the trend that general I/O performance
is worse on the weekends than on the weekdays. We caution that this
finding is likely to be tied to a user-base that tends to run more I/O
intensive jobs on weekends. This might be true at other centers as
well, but requires confirmation.

Implication. HPC centers need to proactively identify such trends
and, if present, they need to be mitigated by monitoring I/O intensive
applications and providing incentive to users to run I/O intensive jobs
on different days. Note that, in this particular case, the spacing out
of I/O intensive jobs does not need to be calibrated at fine timescales
as no temporal trend is observed on an hour-of-the-day basis, only
on a day-of-the-week basis.

In addition to the strong day-of-the-week temporal trends that
we observed, next we investigate if there are larger temporal trends
during the entire time period of our study. For example,

RQ 8. Do we observe that clusters that were run during a specific
two-month period have a high performance variation?

To perform this analysis, we again take the clusters that are in the
top 10% and the bottom 10% when all clusters across all applications
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Figure 17: Temporal spectral of the runs belonging to the high and
low performance CoV (a,b) read and (c,d) write clusters. The time
periods during which the low-CoV runs are executed are largely dis-
joint from the periods during which the high-CoV runs are executed.

and users are sorted according to their performance variation. Fig. 17
shows the temporal spectral of the runs belonging to the high and low
performance CoV (a) read and (b) write clusters. The x-axis shows
the normalized chronological time from the start of our analysis
period to the end. The y-axis shows the clusters in the top or bottom
10% CoV ranges. The dark dots represent the times during which
the runs of the corresponding clusters were run. The shaded regions
show the general periods during which the bottom 10% low-CoV
runs were executed for read and write clusters. Note that the clusters
belong to several different applications. For reads, the top 10%
clusters are from applications SpEC0 (cluster 0), wrf0 (cluster 1),
QE1 (clusters 2-9), QE0 (10-31), mosst0 (32-43), and vasp0 (44-49).
The bottom 10% clusters are from QE3 (0-1) and vasp0 (2-49). For
writes, the top 10% clusters are from applications QE1 (clusters 0-2),
QE0 (3-10), mosst0 (11-22), and vasp0 (23-25). The bottom 10%
clusters are all from vasp0 (0-25). We make several observations.

The time periods during which the low-CoV runs are executed
are different from the periods during which the high-CoV runs are
executed. There are temporal zones when multiple applications ex-
perience high performance variation, for both read and write clusters.
However, it is not straightforward to predict these temporal zones.
For example, the vasp0 application has read clusters in the top 10%
performance CoVs (44-49), as well as the bottom 10% (2-49), and
both types of clusters were run during different times, making it
difficult to predict when the application will experience high perfor-
mance variation. Nonetheless, it is possible to manage the I/O in the
high and performance variation zones. One solution is to perform
clustering so as to compute the base performance and detect varia-
tion from this base. This can open up opportunities for more effective
I/O scheduling during high performance variation periods based on
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congestion detection and control, i.e., using a reaction mechanism
to detect performance variation and coordinate application I/O.

Fig. 17 also shows that the same application can have multiple
incarnations (different clusters) that may be sensitive to performance
variation differently. During the same time period, some incarnations
experience significant variation, while other incarnations are not.
The underlying reason is that different incarnations from the same
application may have different I/O characteristics (e.g., amount of
I/O, shared / unique files, etc.) and that may affect the degree of
observed variation. Previous studies show that performance variation
is a problem [15, 34, 40], but we are first one to show that the same
application has incarnations with different sensitivity levels.

Lesson Learned 9. Our analysis shows that there are separate and
disjoint time zones during which different applications experience
high and low performance variations. These zones are shared across
different applications and clusters. However, not all applications
experience a similar level of variation even during high performance
variation zones. Our study shows that even a simple methodology
using I/O monitoring data collected from Darshan can be useful
in identifying these zones – without requiring additional system
probing, benchmarking, high-overhead instrumentation. This can be
achieved via (1) clustering applications based on their I/O behavior
and (2) keeping track of their observed I/O performance (e.g., using
Darshan). Keeping track of observed I/O performance helps us
estimate the expected/reference I/O performance, and hence, hint at
temporal zones with high variation.

Implication. System administrators can leverage our clustering
methodology to detect and manage periods of high performance
variation without performing any additional instrumentation or prob-
ing and without necessarily requiring to deploy new high-overhead
ML-based prediction models, although application of high-overhead
ML models is useful and can further improve a HPC center’s capa-
bility to detect variations [43, 47].

5 MISC. DISCUSSION
In this section, we discuss the the scope of our findings and system-
specific factors that cannot be decoupled from our analysis.

System-specific environment and workloads. We acknowledge
that our findings are ultimately a reflection of the system we are per-
forming our analysis on. Anecdotally, while we believe that multiple
other systems might share similar workload and user behavior, we
do not claim that all findings are applicable as-is. Nevertheless, this
study should encourage other centers to perform similar analysis
and detect repetition/performance variation patterns. Our dominant
workloads are widely-used and variants of those are run on other sys-
tems too. Note that the system under study uses a Lustre File System
(LFS). Some of the findings related to performance variation might
be related to LFS internals (e.g., metadata operation management,
default striping) and should be tested on systems running different
file systems (e.g., GPFS). However, we have ensured that file system
updates and upgrades are not the source of consistent performance
degradation during the course of our study.

In addition, we investigated the correlation between I/O variability
and metadata operation intensity of a given application. For each
run in each cluster, we collected the time spent on metadata and I/O
performance then calculated the correlation between the two metrics.
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Figure 18: The Pearson correlation coefficients of the time spent on
metadata and I/O performance per cluster shown as CDFs.

Fig. 18 shows the CDF of those correlation coefficients. We observe
that the correlations are normally distributed around and the median
coefficient is 0, which indicates there is a weak correlation between
I/O variability and metadata intensity of the application, on average.

We note that more detailed server-side information is needed to
better understand metadata and filesystem utilization correlations.
For example, spatial OST-level load information is likely to exhibit
better correlation. While we cannot establish such correlations, we
caution that it is not a proof for non-existence. The lesson learned
is that more fine-grained information is critical toward establishing
such correlations, but such tools may sometimes impose unsuitable
overhead on production systems.

Additional telemetry data and application-specific character-
istics. We acknowledge that analyzing additional telemetry data and
characteristics (e.g., data locality and migration) along with its inter-
action with the I/O variability could be useful in better understanding
the repetitive execution patterns. Data movement patterns can be
leveraged to reduce I/O variability caused via interference, or better
coordinate I/O among multiple I/O-intensive applications. Some
file systems (e.g., Ceph) may allow better migration capabilities for
dynamic objects that can use additional telemetry data related to
data locality and reuse access patterns.

Further, application domain (numerical simulation vs. AI appli-
cations) can have a significant impact on the observed repeatability
and variance characteristics. This effect is already exhibited by our
analysis where applications from different science domains exhibit
different repeatability and variance characteristics. Emerging work-
loads such as deep learning training are not dominant I/O-resource
consumers on this system. This is because most machine learning
workloads are compute- and memory bandwidth-bound; they tend
to cache the input training data and do not experience severe I/O bot-
tlenecks after input fetching. However, but that is likely to change in
the near future. As we adopt model-parallelism and bigger training
models, these workloads will also experience I/O bottlenecks and
their repeatability and variance characteristics should be compared
with findings of this study.

Another important contributing factor is runtime configuration
parameters. Runtime configuration parameters directly affect the
observed repeatability and variance characteristics. Findings in our
study hint that such trends already exist. For example, multiple
application in our study (Vasp, Quantum Espresso, Weather Research
and Forecasting Model) exhibits multiple different personalities (I/O
behavior) and their repetitive patterns of such different behaviors
also vary over time – potentially indicating the effect of configuration
parameters that were used to run these applications during different
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campaign runs by scientists. Including such telemetry data, although
difficult to obtain and reason about accuracy, are valuable toward
such analysis.

Post-hoc analysis. We acknowledge that our study is post-hoc in
nature, so we cannot answer “what-if” questions (e.g., changing the
schedule of applications, etc.). Nevertheless, our study demonstrates
how practitioners can learn from our findings, applying similar anal-
ysis at their centers, and improve the state-of-practice. We also note
that our performance variability analysis is fundamentally driven by
our clustering methodology. In our approach, we implicitly assume
that application runs with very similar I/O features and behavior
should also observe similar I/O performance. While from our op-
erational experience and user communications, we have found this
expectation to be reasonable and valid in practice. However, in some
cases, it might not be 100% accurate. Nevertheless, our study shows
that rigorous and carefully designed clustering reduces such risks and
indeed allows us to spot variations in observed I/O performance. We
suspect that in practice, the variation might occur more frequently,
but our methodology has made our estimates conservative.

Monitoring capability and granularity. We note that our anal-
ysis is limited by the granularity of the information provided by
Darshan and other system monitoring tools. Due to overhead asso-
ciated with production-level operations, these monitoring tools are
not as intrusive as they could be in a non-production environment
(e.g., latency for I/O operations in aggregated instead of recording la-
tency for each I/O operation). Nevertheless, our analysis shows that
one could draw useful operational insights and implications from
these very low-overhead, production-suited monitoring / data collec-
tion. Also, we acknowledge that there are multiple other factors that
might cause or be correlated with I/O variance (e.g., power-cooling
conditions, co-scheduled applications, network congestion). How-
ever, instrumenting and collecting data from all sources to diagnose
the problem in real-time on a production system is not practical.
But, we show that even with production-suitable instrumentation,
one can detect interesting application patterns and identify perfor-
mance variation zones. We found that a Darshan-like tool can be
leveraged to understand the varying I/O behavior of applications
and an application’s sensitivity toward I/O performance variability.
However, there are a number of improvement areas (e.g., collecting
more fine-grained phase-based information in Darshan and automat-
ically performing clustering of applications). We will provide our
developed toolset as a package so that other systems can leverage
this tool in practice to gain insights, classify applications, and detect
runs with high I/O performance variability. We are hopeful that this
study paves the path for similar efforts at other centers and pushes
the envelope of our monitoring capability on our HPC systems.

6 RELATED WORK
In this section, we discuss previous work relevant to our study.

Tools for I/O Characterization. I/O characterizations tools are
increasingly deployed on HPC systems as analyzing I/O behavior is
increasingly critical in understanding the health of a system. Several
software tools have been proposed and developed to address (1)
application-level [26, 30, 31, 53] and (2) system-level I/O monitoring
[1, 20, 22, 28, 50]. The former may collect metrics on an individual
application or collection of applications running on a system. In fact,

some effort is being made to provide a framework to monitor I/O at
both the system- and application-level [10, 25, 37]. TOKIO [25] is
a notable framework that combines several of these tools, such as
Darshan, the toolkit used in this study. Additionally, some of these
frameworks propose combinations of I/O monitoring tools to provide
a comprehensive understanding of high-performance systems [5].

Analysis of I/O. Characterization studies are typically done on
(1) domain-specific workloads with application-level analysis and
(2) system-specific HPC file system environment with application-
and/or system-level analysis [6, 11, 12, 15, 19, 24, 29, 35, 40, 44, 45,
48, 49, 52]. The former gives insight to the I/O behavior of certain
domains, such as machine learning, while the latter covers overall
system I/O trends and characteristics such as I/O bandwidth, inter-
arrival times of I/O requests and jobs, idle time, and I/O variability.

Implications of this Study. Works by Isakov et al. [16] and Pavan
et al. [36] have used different grouping methodologies to predict I/O
trends using additional machine learning techniques and to identify
access patterns to take a retrospective approach in characterizing
temporal and feature behaviors, respectively. In comparison, our
study produced several findings with implications that will benefit
future I/O bottleneck research and file system development. For
example, a study by Koo et al. [21] proposes grouping I/O streams
by users in burst buffers in order to improve scheduling policies and
optimize I/O performance. Awareness of our findings can improve
the stream-aware scheduling policy in a read and write-specific
manner. Additionally, studies previously done by dividing jobs by
only user application to analytically predict I/O performance, such
as [18], might benefit by applying our clustering methodology and
integrating relevant features identified by our study.

7 CONCLUSION
In this paper, we discussed a methodological framework and our
experience in leveraging it for examining repetitive job behavior
in large-scale file systems. Using this framework, we investigated
several I/O patterns in a production HPC system and discussed
the implications of our interesting findings. Our findings empower
the development of new system features or policies to reduce I/O
performance variation experienced by users running repetitive jobs.
Our study proposes strategies to develop new features or policies to
help reduce load imbalance and optimize I/O performance by being
aware of workload I/O patterns used in an HPC system.
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