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2 I Motivation and background — Phenolic polymers under

shock I
Background Rankine-Hugoniot energy equation
* Phenolic polymers commonly used in extreme 1
environments - subjected to heating and shock. (Ey — Eo) =5 (Pr+ Po)(Vo — V1)

Common material for NASA in thermal shields.
* Many polymers, and benzene undergo shock-
induced chemical densification.
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* Reliable equation of state (EOS) important for 2 b cusp
accurate continuum scale modelling. Al & B
» Shock-induced chemistry affects material 10 | %%o
properties. : S oo, L
+ Chemical mechanisms during shock loading of 0.4 06 08 1.0
phenolic not well understood. specilicvolisns (anSi) ]

* Reactive MD can bridge the gap. Benzene Hugoniot. Image taken from

Dattelbaum AIP Conf. Proc. 1979, 020001 (2018). ‘

W. J. Carter and S. P. Marsh, Hugoniot Equation of state of polymers (University of
California Press, Berkeley, 1995). : : : ofe .
3. Lang ot al. AP Conf. Prow. 1979, 090008 (2018). Which chemical mechanisms account for densification

C. E. Morris et al. J. Chem. Phys. 80(10), 5203-5218 (1984). behind the shock front in phenolic polymer?
N. C. Dang et al. J. Phys. Chem. A 116, 10301 (2012).



3 ‘ Methodology - Hugoniostat simulations

Non-propagating, constant stress Hugoniostat method by
Ravelo uniaxially compresses system until the final pressure
is reached. Temperature is controlled to satisfy Rankine-
Hugoniot conditions. Previous success with polyethylene in
ReaxFF.

Image crated with OVITO software
A. Stukowski Mod. Sim. Mater. Sci. Eng.
18, 015012 (2010).

» Initial system: 432 linear phenolic chains at 1.4 g/cc

* Pressures studied: 1 to 60 GPa

* LAMMPS molecular dynamics 3D atomistic simulation code
* Periodic boundary conditions

» Equilibrated at ambient T, P for 150 ps

* ~48,000 atoms

* ReaxFF force field - CHO potential by Chenoweth et al.
0.05 fs timestep

R. Ravelo et al., Phys. Rev. B 70, 014103 (2004).

T. R Mattsson et al., Phys. Rev. B 81, 054103 (2010).

S. Plimpton, J. Comput. Phys. 117, 1 (1995).

K. Chenoweth et al.. J. Phvs. Chem. 112, 1040 (2008). |



+ I Results - Hugoniot
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5 ‘ Results
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Carbon-carbon coordination number: Number
of carbons that a carbon is bonded to.
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7 | Results - Selectivity

50 GPa fractional sp2 --> sp3 conversion

by carbon type
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s I Conclusions

* Shock-induced chemical densification in phenolics is captured with
ReaxFF/Hugoniostat combination.

* This process is linked to an increase in C-C bonds under shock loading,
forming a dense, highly crosslinked, carbonaceous solid.

* The primary mechanism for the increase in C-C bonds is inter-ring
bonding, which converts newly bonded ring carbons from sp2 to sp3.

* This reaction is selective, more frequently targeting uncrosslinked ring
carbons over crosslinked carbons, potentially due to local constraints.



9 I Future work

Phenolics - complex polymers that are often not well-
characterized in terms of molecular weight and degree of
crosslinking. Would like to choose a variety of systems that
”run the gamut” from low to high crosslinking with
different sidechains and linkers.

Relevant subset of systems - bracket possible structures
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10 | Results — Qualitative observations

Due to resonance stabilization of radical, rings do not
destabilize immediately upon new C-C bond formation.

c 3 degenerate structures
stabilize the radical by
/ delocalization of electron
I across carbons 2, 4, and 6.
5 6

c 4 1 C
I 3

C

ReaxFF/CHO has been shown to capture the
resonance stabilization of radicals even without
explicit inclusion of electronic degrees of freedom.

K. Chenoweth et al., J. Phys. Chem. 112, 1040 (2008).



