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Problem

Interconnected
infrastructure exposes
new and unique
vulnerabilities.

How do we respond to
an adversary who is
targeting the grid with
informed ill intent?

We require a new
capability to provide a
dynamic response to
this new threat.
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* QOur Scenario

* 13 Node Test Feeder — This
circuit model is very small
and used to test common
features of distribution
analysis software.

* It is characterized by being
short, relatively highly
loaded, with only a single
voltage regulator at the
substation.
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Model Controls and Objective

Each bus can be setto 1 of 5
possible states Goal: All buses to nominal voltage

Q Voltage profile
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Environment

* Reward: negative sum of squared errors of bus voltages compared to nominal voltage values.

n-1
r=—) -V
i=0

where V; and V" are the voltage and nominal voltage of bus i, respectively.

* Horizon: T = 20 steps
* Objective: Maximize the expected discounted reward

T
] =Eg Zytrt
t=1

where y € (0,1) is a discounting factor

* Objective Interpretation: Stabilize the system by bringing voltages as close to nominal as possible.
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Credit Assignment Problem

Explore

Update Policy
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But What About Deep Reinforcement Learning?

Supervised Learning!

Experience Results

Policy Function

(Deep Neural Net)
After 3 Moves - 9 million different possible positions

—
After 4 Moves - 288 billion different possible positions T[@ (Sn) An
AN

Overall — Estimated approximately 10750 possible

" Policy Parameterization
pOSItIOﬂS

(Neural Net Edge Weights)
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Deep Q-Learning Rapid Explanation

A Deep Q-Network is a simple DRL algorithm for discrete environments.

All compared vs.

"Quality’ Function Update scaled by Future rewards
the current

(Deep Neural Net) the learning rate are discounted

\ \ o/ 7

Q(Se,Ap) = Q(S,Ap) + a|Reyq + }"mcfle(_StH,a) — Q(SDAt)]

SN/

Updating from We consider the
current value immediate reward
and the estimated
future rewards
(recursively)




DQN - Details

Values we
experimented

with

Gamma 9
Learning Rate le-5
Replay Memory 50000
Target Update 50

Delay
Max Epsilon 9
Min Epsilon A1

Epsilon Decay 10000

8/27/2021 12:07 PM

0-0.9
le-5-1e-2
10k — 200k
10 -500

0.8-1.0
0-0.2
2k — 100k

Values that achieved

the best results



Experimentation — Details

0. Set Random Seeds

1. Selected Hyperparameters

2. Started Game with a default start state
3. Ran game taking 20 steps

4. Compared to a Greedy Strategy

5. Repeat at Step 1 if drastically worse



Experimentation — Details

DQN Random Seed Analysis
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Experimentation — Details

DQN Random Start Analysis

e i

What happens if we
-0.7 don’t start at the same
start state?

Rolling Mean (500) Reward Per Game

-0.8
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1000 2000 3000 4000 5000
Games
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Final Results — Details N

DQN Final Analysis

= Linal DOM (Epsilon 0)
-0.020 — rmdom
=== Human Player 1
Human Player 2

_0-025 === Human Player 3

o
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g ~0.030 How do we compare
o against humans?
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Final Results — Timing

Tming lGeey loan

Real 0.811s - 0.865s 1.397s—2.433s
User 0.707s - 0.689s 1.088s —1.161s
Sys 0.077s - 0.105s 0.239s —-0.375s

8/27/2021 12:07 PM 14



Future Work

* Continuous Control

* Multi-player (Adversary/Defender)

* Increasing time between actions

* Partial and/or Delayed Observability

* Variable DER Active Power Capacities

* Experimenting with reward shaping

* Increasing the number of DER and/or the size of the OpenDSS power system model



