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NIF is uniquely capable of addressing preheat scaling to next-gen
pulsed power facilities for MagLIF
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= Achieving high level goals reduces risks for scaled MagLlIF:

= Assess viability of laser preheating as a scaling path for magnetized liner inertial fusion
(MagLlIF)

= Determine laser requirements for next-gen pulsed-power facility
= Assess our capability to model preheat “at-scale” and address deficiencies in our codes

= This project is called out in the 2020 ICF report as key to addressing MDD scaling risks
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The extensive suite of NIF diagnostics enables experimental
studies of many physics processes relevant to MagLIF
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These full-scale gas pipe targets are driven by a single quad of NIF,
delivering ~35 kJ of laser energy to the target
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The laser propagation at 11.5% n_,;, in C.H,, is in good agreement
with 2D HYDRA simulations

4 ns 9 ns

0 5 10 mm . . 19mm = Measurements of the time required
Model ‘ for the laser to burn through the
, target bound the energy coupled
Experiment
= For these conditions, the laser
6.5 ns 11.5 ns burnthrough is ~10.8 ns, and the
0 5 10 mm 0 S 10 mm energy coupling is ~24 kJ

= This includes energy into the plasma
and the entrance window
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At 15% n_, the data leads these simulations for the entire
propagation

6 ns 8.5ns 11 ns 13.5ns

Experiment

= At this density the laser
burnthrough is delayed
to 12.9 ns, with ~31 kJ
of energy coupling

Model

The choice of flux limiter is unable to compensate for these
discrepancies

‘ Lawrence Livermore National Laboratory NUYSE
LLNL-PRES-Xxxxxx e

ooty My



Recent 3D simulations better match the propagation at high
density, but not at low density
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Pre-imposed axial magnetic fields up to 24 T have also been
applied for both fill densities
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The emission profile becomes more cylindrical with B-fields
applied, consistent with 2D r-z and 3D Hydra simulations

Fmission profiles for
from 2-8 keV
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The burnthrough time is more significantly reduced with increasing
B-field for 11.5% than for 15% density
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The at-scale MagLIF pre-heat experiments at NIF are showing
good energy coupling in warm hydrocarbons

= In FY22 we will be emphasizing a cryogenic Cryogenic targets
version of the target with D2 fills up to 5 mg/cc with D2 fills

= The combination of B-fields and cryo targets at
NIF is being developed, likely available in FY23

= Additional measurements of energy coupling
using Visar with and without B-fields are
underway (Glinsky 20-C-02)

= Studies of material mixing from the windows
and the walls are also being performed
(Tubman 20-C-03)
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