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NIF is uniquely capable of addressing preheat scaling to next-gen 
pulsed power facilities for MagLIF

1: Magnetization 2: Laser Heating 3: Compression

30 T 25 kJ >40 MA

> MJ 
yields

 Achieving high level goals reduces risks for scaled MagLIF:
 Assess viability of laser preheating as a scaling path for magnetized liner inertial fusion 

(MagLIF)
 Determine laser requirements for next-gen pulsed-power facility
 Assess our capability to model preheat “at-scale” and address deficiencies in our codes

 This project is called out in the 2020 ICF report as key to addressing MDD scaling risks

MixCryo D2
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The extensive suite of NIF diagnostics enables experimental 
studies of many physics processes relevant to MagLIF 
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 LPI and laser energy coupling
— BS and laser propagation
— Laser transmission
— Visar

 Thermal conduction and heat 
transport
— X-ray imaging 
— Spectroscopy
— OTS

 Impurity transport
— Spectroscopy

Visar
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These full-scale gas pipe targets are driven by a single quad of NIF, 
delivering ~35 kJ of laser energy to the target

View from GXD in 90-315

Q31B

 1 cm-long epoxy gas pipe cylinder

 150 um wall thickness

 1-1.4 atm C5H12/C3H8 (with 1% Ar)

 1.5 um thick kapton windows

 1.2x1.6 mm laser spot from CPP

 Emission imaged onto x-ray framing 
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The laser propagation at 11.5% ncrit in C5H12 is in good agreement 
with 2D HYDRA simulations
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Q31B

A. Sefkow

 Measurements of the time required 
for the laser to burn through the 
target bound the energy coupled

 For these conditions, the laser 
burnthrough is ~10.8 ns, and the 
energy coupling is ~24 kJ

 This includes energy into the plasma 
and the entrance window
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At 15% ncrit the data leads these simulations for the entire 
propagation

 At this density the laser 
burnthrough is delayed 
to 12.9 ns, with ~31 kJ 
of energy coupling[mm] [mm] [mm] [mm]

6 ns 8.5 ns 11 ns 13.5 ns
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The choice of flux limiter is unable to compensate for these 
discrepancies

Model

Experiment
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Recent 3D simulations better match the propagation at high 
density, but not at low density
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Pre-imposed axial magnetic fields up to 24 T have also been 
applied for both fill densities

Q31B

90-146.25

N190512 (B=12 T)

N181230  (B=0)

Q31B

Q31B

Gas pipe entrance
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The emission profile becomes more cylindrical with B-fields 
applied, consistent with 2D r-z and 3D Hydra simulations

M. Glinsky
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The burnthrough time is more significantly reduced with increasing 
B-field for 11.5% than for 15% density

Ti
m

e 
(n

s)

2.3

4.3

6.3

8.3

11.5% ncrit

B (T)

240 1912

B=0: N160425, DISC1
B=12 T: N190512,13, DISC1
B=19 T: N200128, DISC1
B=24 T: N210520, DISC1

Ti
m

e 
(n

s)

6

8.5

11

13.5

15% ncrit

B (T)

240 1912

B=0: N160710, DISC1
B=12 T: N191120, OTS
B=19 T: N191121, OTS
B=24 T: N210520, DISC3

11.5 23.8 kJ 31.9 kJ

14 kJ



LLNL-PRES-xxxxxx
11

The at-scale MagLIF pre-heat experiments at NIF are showing 
good energy coupling in warm hydrocarbons

 In FY22 we will be emphasizing a cryogenic 
version of the target with D2 fills up to 5 mg/cc

 The combination of B-fields and cryo targets at 
NIF is being developed, likely available in FY23

 Additional measurements of energy coupling 
using Visar with and without B-fields are 
underway (Glinsky 2O-C-02)

 Studies of material mixing from the windows 
and the walls are also being performed 
(Tubman 2O-C-03)

Cryogenic targets 
with D2 fills




