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Outline

Application of interest is primarily nonlinear solid mechanics.
• large deformation
• plasticity, contact, implicit and explicit dynamics



3 Motivation for polyhedral discretizations
• more general discretizations
• hybrid meshing (tet-hex-poly)
• hex dominant meshing using frame fields
• cut-cell discretizations
• use of Voronoi tessellations
• tetrahedral dual cells discretizations

Abdelkader, A., et al. (2020). ACM Trans. 
Graph. 39, Article 23.

(a)

(b)

Trimmed 
hexahedral 
elements

CAD surface

cut-cell

Kim, H. and D. Sohn (2015).  
IJNME, 102, 1527-1553.

Voronoi

tetrahedral dual cell

hex-dominant meshing 
using frame field

Bishop, J and N. Sukumar (2020). 
Computer Aided Geometric Design, 77, 
101812

Gao, X., et al. (2017). ACM Trans. Graph. 
36, 1-13.



4 Challenges

• meshing 
As poly elements become available in commercial software, meshing tools will follow.
Vorocrust mesher (Ebeida, M. et al.)

• shape functions
Many generalized barycentric coordinates (GBC) are now available, e.g. harmonic, maxent 
(Hormann and Sukumar, 2018)

• quadrature
Several approaches for consistent and stable quadrature schemes, including VEM and other 
gradient projection methods.

• stability
Depends on quadrature scheme;  behavior in near-incompressibility regime (plasticity)

• Beirao da Veiga, et al., 2014, “Hitchhiker’s Guide to VEM”
• J. Droniou, et al., 2018, The gradient discretisation method.
• Bishop, J. (2014). "A displacement-based finite element formulation for 

general polyhedra using harmonic shape functions." IJNME 97: 1-31.



5 Harmonic shape functions
Harmonic functions minimize the Dirichlet energy given by 
the following functional:

The minimizer of this functional satisfies the following 
variational problem: 

The strong form of this variational problem is given by: 
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6 Harmonic shape functions
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7 Harmonic shape functions

partition of unity

linear reproducibility

Can also do higher-order 
reproducibility.
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8 Governing equations (total-Lagrangian formulation)

strong form

weak form

P is first Piola-Kirchhoff stress tensor
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9 Governing equations for small strain elasticity

strong form

weak form

(uniform ellipticity)

(linear elastic)



10 Classical quadrature
If the polyhedron is “star convex”, can use a simple sub-
triangulation to create quadrature points.

XI

XK

XC

XI

XC

XK

quadrature points XK



11 Integration consistency

Divergence theorem states that:

In discrete form:

• For non-polynomial shape functions, this will not be satisfied in general.
• This will result in a lack of consistency (failure of the engineering patch test).
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gradient value at 
quadrature point K



12 Shape function derivative correction

• Project the shape function derivatives to satisfy the integration consistency condition.
• Maintain the reproducing properties of the derivatives.
• Minimize the least-squares difference between the new derivatives and the old.
• Only performed once during simulation  (pre-processing step).

subject to the constraints

This constrained optimization problem can be solved using the method of Lagrange multipliers:

Bishop, J. (2014). "A displacement-based finite element formulation for general 
polyhedra using harmonic shape functions." IJNME 97: 1-31.
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original bilinear form

replace with this modified bilinear form

a(u, v) =

Z

⌦e

ru : Crv d⌦

ah(u, v) :=
X

K

wKru|K : Crv|Kdiscrete form

ah(u, v) :=
X

K

wKru|K : Crv|K

Shape function derivative correction

Note: This modified bilinear form is still 
symmetric (Bubnov-Galerkin).



14

Bishop, J. (2014). "A displacement-based finite element formulation for general 
polyhedra using harmonic shape functions." IJNME 97: 1-31.

uniaxial tension

E = 1.0

⌫ = 0.3

Verification:  elasticity patch test
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Bishop, J. (2014). IJNME 97: 1-31.

Verification: cantilever beam
energy norm

L2 norm

von Mises 
stressVoronoi mesh
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(a) (b)

10,000

0
5,000

polyhedral mesh
conventional 
hexahedral mesh

von Mises stress 

compressible neo-Hookean 
material

��� =
µ

J
(FFT � I) +

�

ln J
I

J = detF F =
@x

@X

Nonlinear example

Bishop, J. and N. Sukumar (2020). "Polyhedral finite elements for nonlinear solid mechanics using tetrahedral 
subdivisions and dual-cell aggregation." Computer Aided Geometric Design 77: 101812
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Point of departure: integration consistency

Try projecting shape function gradients before integrating. 



18 Point of departure: integration consistency

• Project shape-function gradients to a space that is “easy” to integrate.
• VEM projects shape-function gradients to polynomial space.
• Instead here, project gradients to space of shape functions:

(L2 projection)

{�I , I = 1, . . . , Nv}

r�I := argmin
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aJ�J

!2

d⌦

Note: Could also project to any other 
convenient basis, e.g. piecewise constant.
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covariant 
components

bi-orthogonal(�I ,�
J) = � J

I

The solution can be written in terms of the dual basis {�J}

r�I =
X

J

(r�I ,�J)�
J =

X

J

(r�I ,�
J)�J

contravariant
components

Can prove polynomial consistency up to the order of the precision of {�J}

Theorem: for all This ensures satisfaction 
of the patch test.
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Replace the original bilinear form

GIJ

with this modified bilinear form

a(u, v) =

Z
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Z
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Note: This modified bilinear form is still 
symmetric (Bubnov-Galerkin).
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GIJ = (GIJ)
�1

is the Gram matrix of the element of category 0.

Can show that 

where 

Still need to show that a(u, v) is coercive.

a(u, v) =
X

I,J

G�1
IJ (ru,�I)C (rv,�J)

Also, for nonlinear problems, need to ”lump”          to quadrature points.GIJ

GIJ =

Z

⌦e

�I�J d⌦

What are the quadrature points?
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Going to replace          with row-sum lumped version:  GIJ

GL
IJ :=

X

J

GIJ = diag{wI}

Then a(u, v) ! aL(u, v) =
X

K

1

wK
(ru,�K)C (rv,�K)

Can write                 as aL(u, v)

where

aL(u, v) =
X

K

wK (ru)K : C (rv)K

which now has the form of a discrete derivative at a 
quadrature point K.

Can prove that these discrete/projected derivatives have the same reproducing and 
polynomial consistency properties as the original derivatives. 
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w1
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Start with reproducing conditions

Integrate both sides

Define quadrature weight as 

Quadrature-revisited

then

X

K

xK �K(x) = x

(1)

(2)

Quadrature points are just xK Quadrature 
points are now 
just the vertices.

linear 
consistency
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Now have a second-order integration scheme that can 
integrate linear functions exactly.

and

Can extend to higher-order integration using higher-order 
reproducing conditions.

Quadrature

Also, note that
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26 Verification: quadrature
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Verification examples: linear elasticity



28 Verification:  elasticity patch test
uniaxial tension

hexagon mesh

subtriangle quadrature

projection based quadrature

max stress error = 2%

max stress error = 3 x 10-15

E = 1.0

⌫ = 0.3



29 Verification:  elasticity, hole-in-plate tension

uniaxial tension

• exact tension prescribed 
corresponding to infinite plate

• plane strain
• quarter symmetry model used

mapped hexagon mesh
von Mises stress invariant

E = 1.0

⌫ = 0.3



30 Verification:  elasticity, hole-in-plate tension

Optimal rates of convergence
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Nonlinear solid mechanics, examples



32 Application example:  hyperelastic, hole-in-plate

uniaxial extension

• plane strain
• quarter symmetry model used

mapped hexagon meshquad mesh

compressible neo-Hookean material

��� =
µ

J
(FFT � I) +

�

ln J
I

J = detF F =
@x

@X
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plastic strain field

Application example:  elastic-plastic, hole-in-plate
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quad mesh
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• Currently solving for harmonic shape functions and derivative projection 
using a sub-triangulation and FEA.

• Can also use boundary element techniques to solve for both the shape 
functions and their projection since shape function is harmonic.

Calculation of        and�I (r�I ,�K)



36 Summary

1. Presented a generalized method for “correcting” shape function 
derivatives to satisfy integration consistency.

2. Observed optimal convergence rates for verification tests in 2D elasticity.
3. Presented nonlinear examples in solid mechanics
4. Exploring use of BEM to calculate shape function gradient projections.


