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Terrestrial Application: Z Power Flow

oZ power flow
> Conical geometry, ~2-4 MV, gap ~10mm = ¥ = 5 — 9 (Gomez et al., 2017)

> Electron models that don't account for relativity can possess unphysical super-luminal velocities
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3 I Astrophysical Application: Magnetized Relativistic Jets

oActive Galactic Nuclei launch relativistic jets
oy=2-—10

oHow are cosmic rays from jets accelerated?

o Source of high energy, nonthermal ions
emitted from AGN jets

o Diffusive shock acceleration? (First order
Fermi acceleration?

o Magnetized turbulence? (Second order Fermi
acceleration)

o Magnetic Reconnection? (As suggested by
PI(?;imulations)

oAre the jets ion-electrons or positrons-
electrons?

oMulti-fluid relativistic methods are needed
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Relativistic Hydrodynamics
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oTwo (or more) charged fluids T E-VxB
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temperatures 10
o Coupled together via Maxwell's | . 3_B +V X E
equations
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oConservation, stability, v.Blo
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Discontinuous Galerkin Method for Relativistic Hydrodynamics
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oDiscontinuous Galerkin Method U(x) ~ Ul(x) = Z U.di(x) x € Q
o Domain decomposed into cells 1
o Variables approximated via polynomials over each cell (;51 (Xj) — 5ij
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oRiemann Solvers to compute fluxes at surface integrals
oGaussian quadrature used to evaluate integrals

oDifficult Pieces:
o Conserved to Primitive Inversion

o Physicality of Conserved States



6 I Newtonian vs. Relativistic Conserved Variables

Newtonian Conserved Variables:
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oNewtonian Hydrodynamics
o Density, Momentum Density, Energy Density

o Coupling between velocity and momentum is linear

oRelativistic Hydrodynamics

o Relativistic mass density, relativistic momentum density,
Energy Density (including rest mass)

o Everything coupled though non-linear Lorentz factor
oHigh Lorentz factors => Velocity asymptotes to speed of
light
o Small errors in velocity lead to larger error in Lorentz
factor or breaking of causality

oHigh Lorentz factors require robust methods

oConserved to Primitive conversion:

o Convert D,M,E - p,v,P

o Constrained by subluminal », positive P
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Conserved to Primitive Method |: Solve the quartic analytically for
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Relative Error in Recovered Velocity
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oAnalytic solver for quartic polynomials
o Square roots, inverse trigonometry
o Numerically unforgiving
o Expensive to compute

oSolving for velocity
o Solving for a small difference from speed of
light
o Machine precision can lead to superluminal
velocities
o Can fail for very relativistic temperatures

o Small errors in velocity translate into large in
Lorentz factor, other primitives



Pressure P

s I Conserved to Primitive Il: Solve iteratively for w

Relative Error in Recovered Velocity 2w
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Analytical Iterative n=6 Iterative n=12 oChange equations to solve in
terms of “W" a velocity analogue
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©

oSolve quartic with Newton-
Raphson

o First guess with W in [0,1]
converges to physical root

o Arbitrary accuracy

o Robust and accurate without square
roots and inverse trigonometry
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oRecovers velocity to machine

precession for high Lorentz factors



9 I lterative method can be faster than analytical method
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10 I Physicality of Conserved States

oNot all conserved states are physical:

oThey don’t all correspond to a primitive state 1.4
o Can imply superluminal velocities or negative
1.3 1
pressures
o Conserved variables must satisfy: 1.2 1

E>0, D>0, E/c2—D>+|M/c|?>03% |

oReconstructing conserved variables or updating
conserved variables can lead to unphysical conserved

states 0.9 -

oNot an issue for first order or smooth flows
o Big problem for higher order with shocks

oCan be avoided with limiters, but by adding more
diffusion

Physical Conserved States D=1
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11 I Physicality Enforcing Operator

oConserved variables must satisfy:

E S O D S 0 E/Cz _ \/02 +|M/C|2> 0 4 Physical Conserved States D=1
. Physical States
oSet of physical conserved states is convex 134 Efc? —/D? + |M/c|> >0
o If the cell volume average is physical, unphysical nodal
points can be smoothed towards average 1.2 1
NU
Physicality Enforcing Operator SR
1. Cells with unphysical nodal points are 1.0 1
ﬂagged 09 Unphysical States Ve
2. For each unphysical nodal point, we L | | ,
compute the least amount of averaging -1.0 0.5 0.0 0.5

required M/
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oDoes not affect physical cells
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1D Shocks
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oTransverse velocity changes Lorentz factor, density, and pressure
oConserved to Primitive solver enables high Lorentz factor
oPhysicality Enforcing Operator handles low pressures
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1D Shocks
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oLimiters are still needed
o Aggressive limiting can smooth out solution, but at cost of convergence

oShocks adaptive methods could resolve issues
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Kelvin Helmholtz Instability
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15 I For KHI, Riemann Solver Beats Resolution

oSuite of Kelvin-Helmholtz
simulations (using Bodo 2004)

o Probing resolution, method
order, Reimann solver

o For different shear velocities

oCompare to analytic growth
rate

oRiemann solver makes the
biggest difference

oBasis order, resolution makes
a smaller difference
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16 I Are lower order bases more efficient for KHI?

oMore cells increases growth rate
slightly more than higher order

olmplementation specific

o Are all basis orders equally
computationally efficient on all
architectures?

o For our implementation on GPUs
yes, for CPUs no
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Extending to Two-Fluids (and beyond)

Relativistic Hydrodynamics
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Implicit-Explicit (IMEX) Time Integration & stiff modes in relativistic
18 I plasmas

o IMEX methods split fast and slow modes

o Implicit terms solve for stiff modes (plasma oscillation, collisions, 3 Stage IMEX-RK Algorithm

cyclotron frequency) Implicit Solves Explicit Solves
o Explicit terms are accurately resolved (all of CoM physics) A m 8¢ (A #®) 90 = gfuts +cobt)

o IMEX assumes an additive decompositign: F(Uf) + G(U) = 0
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19 I Current Work

oMulti-Fluid IMEX method with separates fluids
o Minimize error-sensitive conserved to primitive conversions

oApply relativistic two-fluid electrodynamics methods to relativistic jets
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2D Riemann Problems
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2 I Are lower order bases more efficient for KHI?

oMore cells increases growth rate
slightly more than higher order

olmplementation specific

o Are all basis orders equally
computationally efficient on all
architectures?

o For our implementation on GPUs
yes, for CPUs no

oMinmod limiter incompatible with
basis order 2
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23 I Synge Gas

oAdiabatic index of a perfect
gas varies from 5/3 to 4/3 for
sub-relativistic to relativistic
temperatures

oSynge gas correctly models
perfect gas

o Requires Bessel functions,
Inverse Bessel functions

o Taub-Matthews
approximates Synge Gas
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|deal

and Taub-Matthews Solver Accuracy
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Synge Gas Performance
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