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Terrestrial Application: Z Power Flow2



Astrophysical Application: Magnetized Relativistic Jets3



Relativistic Two-Fluid Electrodynamics4

oTwo (or more) charged fluids
oRelativistic velocities and/or 

temperatures
oCoupled together via Maxwell’s 

equations

oConservation, stability, 
robustness is crucial

Relativistic Hydrodynamics Coupling Source Terms

Electrodynamics



Discontinuous Galerkin Method for Relativistic Hydrodynamics5

oDiscontinuous Galerkin Method
oDomain decomposed into cells
oVariables approximated via polynomials over each cell

oRiemann Solvers to compute fluxes at surface integrals
oGaussian quadrature used to evaluate integrals
oDifficult Pieces:
o Conserved to Primitive Inversion
o Physicality of Conserved States



Newtonian vs. Relativistic Conserved Variables6



Conserved to Primitive Method I: Solve the quartic analytically for 
v7

oAnalytic solver for quartic polynomials
oSquare roots, inverse trigonometry
oNumerically unforgiving
oExpensive to compute

oSolving for velocity
oSolving for a small difference from speed of 

light
oMachine precision can lead to superluminal 

velocities
oCan fail for very relativistic temperatures
oSmall errors in velocity translate into large in 

Lorentz factor, other primitives



Conserved to Primitive II: Solve iteratively for w8

oChange equations to solve in 
terms of “W” a velocity analogue

oSolve quartic with Newton-
Raphson
o First guess with W in [0,1] 

converges to physical root
oArbitrary accuracy
oRobust and accurate without square 

roots and inverse trigonometry

oRecovers velocity to machine 
precession for high Lorentz factors



Iterative method can be faster than analytical method9



Physicality of Conserved States10



Physicality Enforcing Operator11

oPreserves volume average of conserved state
oDoes not affect physical cells

Physicality Enforcing Operator

1. Cells with unphysical nodal points are 
flagged

2. For each unphysical nodal point, we 
compute the least amount of averaging 
required

3. For each flagged cell, the least amount of 
averaging required for all points is applied



1D Shocks12

oTransverse velocity changes Lorentz factor, density, and pressure
oConserved to Primitive solver enables high Lorentz factor
oPhysicality Enforcing Operator handles low pressures



1D Shocks13

oLimiters are still needed
oAggressive limiting can smooth out solution, but at cost of convergence

oShocks adaptive methods could resolve issues



Kelvin Helmholtz Instability14

HLL; Basis=2 HLLC; Basis=2



For KHI, Riemann Solver Beats Resolution or Order15

oSuite of Kelvin-Helmholtz 
simulations (using Bodo 2004)
oProbing resolution, method 

order, Reimann solver
o For different shear velocities

oCompare to analytic growth 
rate

oRiemann solver makes the 
biggest difference

oBasis order, resolution makes 
a smaller difference



Are lower order bases more efficient for KHI?16

oMore cells increases growth rate 
slightly more than higher order

oImplementation specific
oAre all basis orders equally 

computationally efficient on all 
architectures?

o For our implementation on GPUs 
yes, for CPUs no



Extending to Two-Fluids (and beyond)17

oExplicit Hydrodynamics, 
Electric Fields

oImplicit Source terms

Relativistic Hydrodynamics Coupling Source Terms

Electrodynamics



Implicit-Explicit (IMEX) Time Integration & stiff modes in relativistic 
plasmas18

o IMEX methods split fast and slow modes
o Implicit terms solve for stiff modes (plasma oscillation, collisions, 

cyclotron frequency)
oExplicit terms are accurately resolved (all of CoM physics) 
o IMEX assumes an additive decomposition:

3 Stage IMEX-RK Algorithm

Fa
st Slow

Implicit Explicit

Stiff Modes:
Plasma., Oscillation
Collisions
Cyclotron frequency



Current Work19

oMulti-Fluid IMEX method with separates fluids
oMinimize error-sensitive conserved to primitive conversions

oApply relativistic two-fluid electrodynamics methods to relativistic jets
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2D Riemann Problems21



Are lower order bases more efficient for KHI?22

oMore cells increases growth rate 
slightly more than higher order

oImplementation specific
oAre all basis orders equally 

computationally efficient on all 
architectures?

o For our implementation on GPUs 
yes, for CPUs no

oMinmod limiter incompatible with 
basis order 2



Synge Gas23

oAdiabatic index of a perfect 
gas varies from 5/3 to 4/3 for 
sub-relativistic to relativistic 
temperatures

oSynge gas correctly models 
perfect gas
oRequires Bessel functions, 

Inverse Bessel functions

oTaub-Matthews 
approximates Synge Gas



Ideal and Taub-Matthews Solver Accuracy24



Synge Gas Performance25


