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Spectral Equivalence Properties of
Higher-Order Tensor Product Finite Elements

Clark R. Dohrmann

Abstract We present spectral equivalence results for higher-order tensor product
edge-, face- and interior-based finite elements. In particular, we show for certain
choices of shape functions that the mass and stiffness matrices of the higher-order
elements are spectrally equivalent to those of an assembly of lowest-order elements
on the associated Gauss-Lobatto-Legendre mesh. Using this equivalence, efficient
domain decomposition or multigrid preconditioners can be designed which have
favorable computational complexity. Numerical results are presented which confirm
the spectral equivalence results.

1 Introduction

The focus of this study is on spectral equivalence results for higher-order tensor
product finite elements in the H(curl), H(div), and L? function spaces. For certain
choices of the higher-order shape functions, the resulting mass and stiffness matrices
are spectrally equivalent to those for an assembly of lowest-order edge-, face- or
interior-based elements on the associated Gauss-Lobatto-Legendre (GLL) mesh.
This equivalence will help enable the development of efficient domain decomposition
or multigrid preconditioners. Specifically, preconditioners for the equivalent lowest-
order linear system can be used for the higher-order problem and avoid the demands
of assembling a higher-order coefficient matrix.

Using assemblies of lowest-order (linear) elements for efficient preconditioning
of higher-order discretizations in the function space H' is not new. We refer the
interested reader to Section 7.1 of [10] or the introduction of [2] for a discussion of
the pioneering work by Orszag [9], Deville and Mund [3, 8], Canuto [1] and others.
We are, however, not aware of similar approaches for problems using higher-order
edge- (Nédélec), face- (Raviart-Thomas) or interior-based elements. We note for the
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case of nodal elements that the degrees of freedom (DOFs) for a higher-order element
and its equivalent assembly of lowest-order elements are nodal values in both cases.
This natural one-to-one correspondence of DOFs can be realized for edge-, face- and
interior-based elements by using shape functions (bases) associated with integrals
and introduced by Gerritsma [5].

For edge-based elements, the DOFs for the shape functions are associated with
integrals of tangential components of a vector field along each edge of the associated
GLL mesh (see Figure 1 left). Similarly, DOFs for face-based elements correspond
to integrals of the normal component of a vector field over individual faces of the
GLL mesh (see Figure 1 right). For completeness, we also present shape functions
and equivalence results for related interior-based elements. For these elements, the
DOFs correspond to integrals of a scalar function over individual elements of the
GLL mesh. We note in all three cases that the shape functions can be expressed
simply in terms of one-dimensional interpolatory nodal functions at the GLL points
along with a one-dimensional function which enables the correspondence between
DOFs of the higher- and lowest-order elements.

The paper is organized as follows. Shape functions for edge-, face-, and interior-
based elements are described in §2. This is followed in §3 by a presentation of
spectral equivalence results between higher-order elements and their lowest-order
counterparts. Numerical results are presented in §4 which confirm these results. A
more comprehensive report [4] can be consulted for complete proofs and applications
of the spectral equivalence results to preconditioning.

Fig. 1 Edge (left) and face (right) locations on three faces of a cube for a higher-order element
of degree p = 4. Also shown is the corresponding assembly of p> lowest-order elements on the
associated Gauss-Lobatto-Legendre (GLL) mesh.
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2 Shape Functions

Following the notation in [7], let Q; ;  denote the space of polynomials in reference
element coordinates (171,72,13) € [—1, 1] for which the maximum degree is i in 7y,
jinnp and k in n3.

As is commonly done for nodal elements, one-dimensional GLL shape functions
®0, . .., ¢, are used to construct higher-order shape functions in three dimensions.
See Figure 2 (left) for the case of degree p = 4. Notice that these functions are
simply interpolatory (Lagrange) shape functions at the GLL points xo = -1, x, = 1,
and x;_y <x; fori=1,..., p. We remark that the internal GLL points x, . ..,Xp_
are the roots of L’ _, where L, is the Legendre polynomial of degree p.

Shape functions for edge-, face-, and interior-based elements based on the work
of Gerritsma [5] are described next. Although different from the shape functions in
[7], they span the same polynomial spaces and are conforming between elements.

Fig. 2 One-dimensional higher-order (left) and linear (right) shape functions associated with GLL
points for degree p = 4.

2.1 Edge Shape Functions

The vector field for an edge-based finite element of degree p can be expressed in
terms of the reference element coordinates as

e _

up

M?pbl + Mgpbz + I/tgpb3,
where u‘fp € Qp-1,p,p> ugp € Qp.p-1,p> ugp € Qp,p.p-1, and by, by, b3 are unit
vectors associated with the element coordinates (see e.g. [7]).

Our present focus is on edges aligned with the b; direction; similar constructions
of shape functions hold for edges aligned with the other two directions. For each
i €{0,...,p— 1} define
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D Om<i
wi(m) = Z AimPm (1M1), Qjm = {1 "
m=0

Since ¥ (X;+1) — ¥i(x) is 1 for m =i and O for m # i, it follows that

Xm+1
/ i dx = 6im, ey

where 6;;, is the Kronecker delta function. The edge functions ¢/, ..., lﬂ;_l and
their application to tensor product finite elements are discussed in [5].

Let &;j denote the edge with 1 € (x;,xi4+1), 72 = x; and 173 = x. The shape
function associated with this edge is given by

6 (mm2,13) = i (1)@ (112) $k (13) D1 2
Notice that q)?j (b2 = ‘l?j « *b3 = 0. Thus, the tangential component of ¢‘l?j . Vanishes
along all edges notin the b direction. Consider the integral aj, = := /&mn ¢?j o b1dx.
Since ¢ (xm) = 6 jim and ¢g (x,) = Sxn, we find using (1) that

X1+1

alemn = 6/’”6’(" W{(Ul) dx = 6[16jm5kn‘

X1

In other words, the integral of the tangential component of ¢?. vanishes over
all edges except for &;ji, for which this integral is 1. This feature ensures linear
independence of the shape functions. Moreover, arguments similar to those in [7]
can be used to show the finite element space is conforming in the space H(curl; Q),
where Q := (-1, 1). Using the curl-conserving transformation described in §3.9 of
[6], the finite elements are also conforming in the space H(curl; Q), where Q is the
domain of the higher-order finite element mesh.

2.2 Face Shape Functions

The vector field for a face-based finite element of degree p can be expressed in terms
of the element coordinates as

f f f f
up = I/llpbl + uzpbz + u3pb3,
where ul € Qp p—1,p-1, Uy, € Qpt,p,p-1,and u € Q1 p1,p (again, see e.g.
[7]).
Our present focus is on faces aligned with the b3 direction; similar constructions
of shape functions hold for faces aligned with the other two directions. Let %
denote the face with 171 € (x;,Xi4+1), 72 € (x,X41), and i3 = xi. The shape function

associated with this face is given by
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! 11 (1.m2,13) = W[ ()Y (2) i (173) b 3

Notice that ¢£J. (b= ¢£J. « - b2 = 0. Thus, the normal component of (b;j « vanishes
over all faces with normals not in the b3 direction. Next, consider the area integral

aflmn = fﬁ ¢z.jk - b3 dx. Since ¢ (x,) = dkn, we find using (1) that

a;mn = / 5kn¢£(’71)¢;‘(7]2) dx
ﬁmk

X1+1 Xm+1
= Okn Yi(m) dm / ¥ (m2) dmz = 8116 jmOkn.
Xm

X1

In other words, the integral of the normal component of ¢§.j « vanishes over all faces
except for F; i, for which this integral is 1. Again, this ensures linear independence
of the shape functions, and arguments similar to those in [7] can be used to show the
finite element space is conforming in H(div; Q). Using the divergence-conserving
transformation described in §3.9 of [6], the finite elements are also conforming in
the space H(div; Q), where Q is the domain of the higher-order finite element mesh.

2.3 Interior Shape Functions

The scalar field of an interior-based element is approximated by functions u}, €
Qp—l,p—l,p—l- Let Vijk denote the cell with n; € (xi,xi+1), nm € (xj,xj+1), and

n3 € (xx,xk+1). The shape function associated with this cell is given by
&1 m2,m3) = ¥ ()Y (m2)yrg (n3). )

Consider the volume integrals aj,  := /Vzmn ¢;.’jk dx. We find using (1) that

X[+1 , X+l , Xn+l
D =/ '/’i(Ul)/ l//j(ﬂz)/ Y (13) dx = 6i10 jimOkn-
X1 Xm Xn

In other words, the integral of ¢}, vanishes over all regions except for V;jy, for
which this integral is 1. This ensures linear independence of the shape functions.
Further, a pplynomial function u}, € Qp—1,p-1,p-1 can be expressed in terms of the
shape functions as

up = 0y CipWimy; v (n), C\i/jk(u\lla):/ s

V‘jk

Remark 1 Starting with the edge shape function ¢?j « 10 (2), notice that the face shape
function ¢£’ik in (3) is obtained simply by replacing ¢;(172)b with !,lf;.b3. Likewise,

\

Lk in (4) is obtained from ¢fl.j « simply by replacing ¢ (173)b3 with ¢} (173).
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2.4 Lowest-Order Shape Functions

The lowest-order counterparts of the one-dimensional higher-order shape functions
¢o, . - ., ¢ are piecewise linear and are denoted by ¢op, . . . ¢, (see Figure 2 (right)
for the case of p = 4). Analogous to the the higher-order edge, face, and interior
shape functions, we may define the lowest-order counterparts of (2), (3) and (4) as

O% i (mm2,13) = ¥, (1) 0 (12) bicn (113) b1, 5)
‘/’i'jkh(m”’%m) =i (Y 7, (12) @i (13) b3, (6)
Gi en (1,m2.m3) = ¥, MY, (12)¥4, (13), (7

where i/, is defined analogously to ¢; as

p

!//ih(nl) = Z aim¢mh(nl)-

m=0

By construction, the lowest-order edge, face, and interior shape functions in (5-7)
have similar interpolatory properties to their higher-order counterparts. For example,
the integrated tangential component of ¢?j o, 18 1 along edge &; jx and vanishes along
all other edges of the GLL mesh just like the higher-order shape function ¢?j &

3 Spectral Equivalence Results

In this section, we summarize the spectral equivalence of mass and stiffness matrices
of higher-order edge, face and interior-based elements with their assembled lowest-
order counterparts on the GLL mesh. By spectral equivalence we mean that constants
in the estimates are independent of the polynomial degree. In three dimensions, the
constants for the equivalence are independent of element aspect ratios for mass
matrices, while stiffness matrices have a weak dependence for edge-based elements
but no dependence for face-based elements. More details, including proofs of the
results, can be found in [4]. We use the notational convention f =~ g to mean that
there exist positive constants ¢ and C, independent of polynomial degree, such that
cg < f < Cg for non-negative scalars f and g.

3.1 Mass Matrix Equivalence

We follow closely in [4] the development given on pages 16 and 17 of [1] to show
spectral equivalence of mass matrices. Based on these results, spectral equivalence
for stiffness matrices is shown to follow.
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Lemma 1 Let u';l denote the lowest-order interpolant of the higher-order vector

function u';,, where k € {e,f}. Similarly, let u) denote the lowest-order interpolant

of the higher-order scalar function uj,. It holds that

S 2y =~ Sz e ®)
”ufh”LZ(Q) = ”ufp”LZ(Q), ©))
||”\;/,||L2(Q) = ||“\,/;||L2(ﬁ)- (10)

3.2 Stiffness Matrix Equivalence

The stiffness matrix for a higher-order edge-based element is associated with the curl
semi-norm of u‘f,, which we denote by |V X u‘f, )2 @) Similarly, the stiffness matrix
for a higher-order face-based element is associated with the divergence semi-norm
of u!,, which we denote by |V - ul,[,2g.

Lemma 2 Let "Z denote the lowest-order interpolant of u‘l‘,, where k € {e,f}. It
holds that

IV xub] ) = 1V XS] 2q)- (11)

Vw20 = 1V w0 (12)

4 Numerical Results

Numerical support for the estimates in (8-12) is provided in this section. For each of
these estimates, we consider a generalized eigenvalue problem of the form B,x =
ABpx, where B, and By, are the higher- and lowest-order element mass or stiffness
matrices corresponding to the estimate. Notice that B, and By, are singular for (11)
and (12), with null spaces corresponding to gradients of node-based finite element
functions and curls of edge-based finite element functions, respectively. For these
two cases, we confirmed that the null spaces for B, and By, are identical. Further, the
generalized eigenvalue problem was solved in a space orthogonal to the null space.

The smallest and largest eigenvalues corresponding to (8-10) are shown in Figure 3
(left) for elements in three dimensions. For completeness, results are also shown for
node-based elements in the space H'. Notice in all cases that the smallest and largest
eigenvalues are bounded by those for node-based elements. This provides numerical
support for (8-10) based on node-based spectral equivalence results in [1]. Similar
results are shown in Figure 3 (right) which correspond to (11-12).
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Fig. 3 Generalized eigenvalues associated with mass (left) and stiffness (right) matrices in three
dimensions.
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