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Reactive films and blanket coatings
are of interest for several applications.

Joining by soldering (~10s of pm)

Heat sources for energy (~10s pm)
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Finite Element Simulations of Al/Pt reacting on substrate: David Kittell (Sandia)
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Wavefront stability is important to reliable use
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Processing presents numerous alternatives for
design but with associated challenges.

Physical vapor deposition Bosch etching
10 - 10-7 Torr base pressure Etching submicron features in Si
> 99 % uniformity across 6" dia. High aspect ratios
intai Photolithograph
Maintain low temperature graphy P @ﬂ@.«. -

Precision: ~1 nm Feature definition by liftoff X X
Various materials ‘

\ O\
\

Cross Section showing partially
etched holes, @ = 1 micron

Atomic layer deposition
Infiltration (few materials)

Conformal coatings
Angstrom level precision

Reactive multilayer shown
by TEM in cross section
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1)  Alook at reactive properties across the full range of

stoichiometry for the Al/Pt system
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Multilayers have been made with different overall
stoichiometry and periodicity.

Equimolar Platinum rich

Bilayer
Thickness
1

Bilayer
Stoichiometry varied from 9AIl: 1Pt to 1Al:9Pt.

Bilayer thickness varied from 10 nm to 1600 nm.
Total multilayer thickness fixed at 1.6 um.

Bilayer
Thickness
2




Example multilayers are shown by SEM.

4Al:1Pt 1Al: 1Pt 1Al:4Pt
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}Bilayer

1.0 pum

Each has a bilayer thickness of ~400 nm.

D.P. Adams, 10/17



Differential Scanning Calorimetry 1s used to
obtain thermograms from Al/Pt.
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Measured heats of reaction vary with
bilayer thickness and stoichiometry.
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Equimolar multilayers exhibit greatest |AH,.,|, when comparing multilayer of

identical bilayer thickness.




Interface structure and composition within an
Al/Pt multilayer 1s revealed by TEM/EDS.
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Heats of formation are determined from
measured heats of reaction.

Heat of Reaction (kJ/mol. at.)
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Thermal 1gnition experiments

» Equilibrate hotplate at known

temperature (in air)

« 1 mm? sample is tossed onto hotplate to

contact on planar face

* Observed during contact to view one of @

two behaviors:

— Ignition (evidenced by bright flash and burst
into microscopic debris.
— No ignition (subtle changes in shape, slight

discoloration due to oxidation) Hot plate at
known temperature




[gnition temperature (7;,) varies with bilayer
thickness and stoichiometry.
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« Ignition temperature increases with bilayer thickness for each molar ratio.

* Equimolar multilayers exhibit lowest ignition temperatures.



Logarithmic dependence ot 7, with bilayer

thickness for each stoichlometry.

Analytical expression™ for ignition temperature:

E, /R

w = premix thickness

tz = bilayer thickness
AH,,, = heat of reaction

R = thermal resistivity

= thickness of multilayer
E, = activation energy

n = molar fraction

*G.M. Fritz, S.J. Spey, Jr. M.D.
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Activation energies associated with reactant

mixing are estimated.

Analytical expression™ for ignition temperature:

E, /R

g
. Hz 7 AH,, D, Ry |

tg W Jn(]—n)

w = premix thickness

tz = bilayer thickness
AH,,, = heat of reaction

R = thermal resistivity

= thickness of multilayer
E, = activation energy

n = molar fraction

*G.M. Fritz, S.J. Spey, Jr. M.D.
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High speed videography of propagating waves
1s used to evaluate front morphology and speed.

plan view

) 80 us

Tested as freestanding foils

Point ignition in air

No preheat above room temperature

240 us
Evaluate front position: outside ignition zone ;
Position is plotted versus time to determine speed - 400 ps
Test Chamber ged
Patm 4
Phantom
High speed : 560 US
camera R :
Reactive foil
Protective iR
R
Cover -
Igniter (25V) '
720 us
S mm

Equiatomic Al/Pt, bilayer thickness: 50 nm



Most multilayers undergo stable propagation.
Only one design, near a limit of stoichiometry,
exhibited an instability.

1 Al: 4 Pt All other reactive designs,
Bilayer thickness = 800 nm (different molar ratios,

bilayer thicknesses)

Unstable modes predicted near concentration limits: A.S. Rogachev, F. Baras, et al. Doklady Physics 53 (2008).



Waveftront speed varies with bilayer thickness
and stoichiometry.

Wavefront Speed (m/s)
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Zero speed means multilayer could not be ignited (multiple attempts).

The range of reactive stoichiometry spans 20 to 80 at.% Pt (including endpoints).



Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.

k 2 -1 4A RTIZIlaX }\.«2

Vﬂame ( Z a ) CXp (_E/ RTmax)
n=odd
E(Ta B To )
A = Arrhenius prefactor E = activation energy k, = Fourier coefficients
R = gas constant T,..x = maximum temperature ¢, = Fourier eigenvalues
A = thermal diffusivity (in plane) T, = ambient temperature T, = adiabatic temperature

Eq. from A.B. Mann, A.J. Gavens, M.E. Reiss, D. Van Heerden, G. Bao, T.P. Weihs et al. J. Appl. Phys. 82 (1997).



Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.
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Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.
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Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.
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Attempts to utilize the analytical model by Mann

et al. to predict wavefront speeds.
Y
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Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.
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Attempts to utilize the analytical model by Mann
et al. to predict wavefront speeds.

Fitting parameters in RED B
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Predicted propagation speeds match well to

measured values (three stoichiometries).

Wavefront Speed (m/s)
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Time Domain ThermoReflectance (TDTR)
for determining cross-plane thermal conductivity
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TDTR has been used previously to determine
thermal conductivity of thin film multilayers.

Cu-Nb does not interdiffuse and 80_ 7 '?Sk ' ]
so creates “perfect” interfaces. 70F -- A 200K
- --- @ 300K
—— B 500K

60
Metal multilayers found to obey

lumped series resistance model ol ]
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Thermal Conductivity (Wm™K™)
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R. Cheaito, K. Hattar, J.T. Gaskins, A.K. Yadav, J.C. Duda, T.E Beechem, J.F. Ihlefeld, E.S.
Piekos, J.K. Baldwin, A. Misra, P.E. Hopkins, Applied Physics Letters, 2015, 106, 093114



Thin film test structures for TDTR

Small tg

Pt/Ni/Co s 80 nm Al Transducer layer
Aluminum r

Pt/Ni/Co I Superlattice 200 nm
Aluminum .1

Pt/Ni/Co R ™ ' '
Aluminum e Si substrate Native Oxide

Al transducer

Large tg

Al transducer




Measured cross-plane thermal conductivity

k (W/m.K)
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Far below the rule — of —
mixtures estimate

> 154 W/mK
k varies with bilayer thickness

Similar trend and values
predicted for series resistor
network used in velocity
modeling.



Measured cross-plane thermal conductivity

k (W/m.K)
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Does the series resistance model work?

Thermal Resistance (m?K/MW)
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005

, Roll off

Amorphous Alloy Limit

—E— Al/Pt

20 40 60 80 100 120 140
Number of Bilayers

Strong linear trend indicates
model behavior

Roll off indicates coherent
transition

Maximum resistance of metal
multilayer greater than
amorphous analogue

Detailed discussion of thermal can continue at a Poster tonight
(ES09.03.36 Beechem, Saltonstall, Abere, Adams)



Future direction: 2-D periodic reactive coatings
fabricated by Bosch etching and ALD.

Cross Section showing partially
etched holes, @ =1 um

54800 2.0kV 4.1mm x18.0k SE(M) 10/31/2013 10:03 3.00um

Dark = Si
= CHs Pt film resistivity:
| Co,
HaC~Pt-CHg 0O 11 pOhm-cm
CH z
3
CH,
Pulse Pump
00000 PtC,H, Pt C,Hpt
Pump Pulse
co, 0,03
H,0

Pt CVD - reaction:
(MeCp)Pt(Me);(g) + O5(g) — Pt(s)+COz(g)+H2(g)+CH4(g)

Pt-ALD - half-reactions: (150°C ~0.5 A/cycle)
Pt-(CH;), "+ 30;(g) = Pt-O* + 3CO,(g) + 3H,0(g)



Summary

 Various techniques used for thin film fabrication and surface engineering provide
the necessary control of stoichiometry, purity and dimension for detailed studies of
structure-composition-property relationships in reactive materials.

» The range of reactive stoichiometry for bimetallic multilayers is large when

periodicity is made small (nm scale)
- Al/Pt: reactive designs span at least 20 to 80 at.% Pt.
- Attributed to a substantial heat of formation and T, across molar range

 Heats, ignition temperatures and wavefront speeds vary with stoichiometry

* Past analytical models have been used to predict wavefront speeds for different
stoichiometries that match experimental measurements.

» Thermal conductivity (cross plane) varies with bilayer thickness, overall chemistry
and possibly the characteristics of the premixed zone.



