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Project summary

Goal: New quantum techniques and algorithms from the interplay of 
quantum simulation, optimization, and machine learning 

Optimization

Machine 
Learning

Quantum 
Simulation

Convex and gradient-based optimization

Convex/semidefinite relaxations

New ML-inspired optimization problems

Sampling from max-entropy distributions

Hamiltonian simulation

(Approximate) extremal energy states
of physically-inspired Hamiltonians

Variational approaches and QAOA

Adiabatic quantum evolution



Optimization 
Quantum approaches for 

optimization

[Childs, Gharibian, Grace, Jordan, 
Parekh, Rudinger, Swingle, Wu]

Machine Learning
Quantum linear algebra, 

learning quantum states, and 
tensor decompositions

[Grace, Liu, Rudinger, Somma, Subasi, 
Swingle, Taylor, Wu]

Simulation
Quantum field theories, 
Hamiltonian simulation, 

approximate ground states

[Baczewski, Childs, Gharibian, Jordan, 
Parekh, Preskill, Sarovar, Somma]

New quantum algorithms for 
semidefinite and convex 
optimization, optimally 
controlled optimization 
techniques

Highlights  4, 5, and 6

New quantum algorithm for 
solving linear systems

Highlight 1 

New quantum Hamiltonian 
simulation algorithms, protocols 
for thermalization, and classical 
algorithms for approximating 
ground states

Highlights 2, 3, and 5 

Research Strategy



Highlights



Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations
Highlight 1 [Yigit Subasi, Rolando Somma, Davide Orsucci]



Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations
Highlight 1 [Yigit Subasi, Rolando Somma, Davide Orsucci]

The randomization method (RM)
A variant of adiabatic quantum computing in which the parameters of the Hamiltonian are 
changed discretely and the evolution is for a random time. The time complexity is

is the path-length of the state encoding the solution
is the smallest spectral gap of the Hamiltonians
is the accuracy of the state preparation 

Hamiltonians and linear systems

We observe the property

The family of Hamiltonians is

Important variables for this problem

The path length satisfies

The spectral  gap satisfies 

ᵰ�  is the condition number of A.
Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018). 

Polynomial dependence in 
condition number and no 
dependence in dimension 
imply quantum speedupSame time complexity as 

HHL

S. Boixo, E. Knill, and R. Somma, Q. Inf. Comp. 9, 0833 (2009). 



Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations
Highlight 1 [Yigit Subasi, Rolando Somma, Davide Orsucci]

Spectral gap amplification

Important variables for this problem

The path length satisfies

The spectral  gap satisfies 

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018). 

The gap-amplified family of Hamiltonians is:

Linear dependence in 
condition number results in 
an optimal quantum 
algorithm for linear systems

R. Somma & S. Boixo, SIAM J. Comp. 42, 593 (2013)

Experimental verification of new algorithm:

arXiv:1806.03295

NMR, 4 qubits



Engineered thermalization of many-body quantum systems
Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]

Scientific Achievement
Designed and demonstrated protocol for generating 
thermal states of many-body quantum systems using 
coupled, driven ancilla spins. 

Significance and Impact
Quantum simulation of thermal states is useful for 
extracting finite temperature properties of many-body 
quantum systems, and we have developed a practical 
protocol for doing this.

Research Details
Thermalizing a many-body quantum system requires 

coupling it to an engineered reservoir. The conditions 
required for thermalization are known if one has access 
to a macroscopic reservoir, but this is not typical.

We have developed a protocol that results in 
thermalization using driven, dissipated ancilla spins that 
are coupled to the system in a way that results in 
engineered energy exchange.

Numerical and analytical results demonstrate that the 
steady-state of the engineered dynamics is the desired 
thermal state of the many-body system.

Schematic of protocol: Ancilla systems that are 
optically pumped to local thermal states are coupled 
to the system to thermalize. The resonant energy of 
the ancilla systems are swept across the spectrum of 
the primary system, and over a few sweeps this 
dynamics generates a thermal distribution in the 
principal system. 

SystemAncilla

Example target 
system: cold 
atom lattice, 
Esslinger Lab, 
ETH Zurich



Engineered thermalization of many-body quantum systems
Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]

System Ancilla

Timescale Hierarchy

A time-dependent term is added to 
the ancilla energy to sweep the 
system’s full energy spectrum.

Ancilla optically 
pumped to thermal 
state

A reduced master equation describes system evolution 
when the ancilla dynamics is averaged over

Ancilla Correlation Functions

Operator on System



Engineered thermalization of many-body quantum systems
Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]

Two Site 
System

Markovian Evolution of Random Initial State

How close is the time averaged state to thermal 
state?

Ongoing Research: 
• Analytical 

calculations to 
approximate the 
time-averaged, 
effective generator 
of evolution

• Prove fixed point of the dynamics and provide a bound on the 
      thermalization time.
 
• Demonstrate this scheme is generalizable to generic system 

Hamiltonians.



Faster quantum simulation by randomization
Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]

Scientific Achievement
Stronger product-formula bounds were proved by 
randomization, and their advantage for near-term 
quantum simulation was evidenced by numerics.

Significance and Impact
Product formula algorithm is a straightforward yet 
surprisingly efficient approach to simulating quantum 
dynamics on a quantum computer. Recent results show 
that this approach can outperform more sophisticated  
algorithms, and it is important to understand why it has 
such outstanding performance.

Comparison of the number of trotter steps 
between deterministic and randomized first-
order product formulas. Error bars are omitted 
when they are negligibly small on the plot. 
Straight lines show powerlaw fits to the data.

Research Details
  – Proved stronger error bounds for product formulas by randomizing how the terms in the 
Hamiltonian are ordered.
  – Showed that randomized bounds can be asymptotically better than previous bounds that exploit 
commutation between the terms in the Hamiltonian.
   – Numerically compared the deterministic and randomized product formulas, showing improvement 
even with respect to the empirical performance.

Andrew Childs, et al., arXiv:1805.08385 (2018)



Faster quantum simulation by randomization
Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]

Andrew Childs, et al., arXiv:1805.08385 (2018)

Quantum (Hamiltonian) simulation
Given a description of a Hamiltonian H and an evolution time t,  perform                      up to 
some error ε.

 Target system                         
                  ;
       is a tensor product of Paulis (up to a sign).

 Can use the first-order product formula

 Generalizations to (2k)th-order are known [Suzuki 92].
 Advantage: straightforward; can empirically outperform more sophisticated 

simulation algorithms.
 Problem: error bounds are loose in practice.

Product formula algorithm



Faster quantum simulation by randomization
Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]

Andrew Childs, et al., arXiv:1805.08385 (2018)

New bounds by randomization

• We prove stronger bounds by 
randomizing how terms in the 
Hamiltonian are ordered, e.g.,

• New error bound for first-order formula:                    

       improving over the old bound

• We also derive new bounds for higher-
order formulas.

• Numerical simulations show 
improvement even with respect to the 
empirical performance.

Comparison of the number of trotter 
steps between deterministic and 
randomized first-order product 

formulas.



Highlight 4 [Shouvanik Chakrabarti, Andrew Childs, Tongyang Li, Xiaodi Wu]

 Quantum algorithms and lower bounds for convex optimization

[2] S.P. Jordan, Fast quantum algorithm for numerical gradient estimation, 
Phys. Rev. Lett. 95.5, 050501 (2005).

[1] Y.T. Lee, A. Sidford, and S. Vempala, Efficient convex optimization with membership 
oracles, Proceedings of the 31st Conference on Learning Theory (COLT 2018), 1292-1294.

Chakrabarti et al., arXiv:1809.01731



Highlight 5 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

 Approximate Solutions for Quantum Heisenberg Models via Hyperplane Rounding

Discrete optimization techniques enable new rigorous approximations of low-energy states of 
quantum Heisenberg Hamiltonians, a central topic in condensed matter physics. 

Anti-ferromagnetic Heisenberg model: roughly 
neighboring quantum particles aim to align in 
opposite directions.  This kind of Hamiltonian 
appears, for example, as an effective Hamiltonian 
for so-called Mott insulators.
(Image: Sachdev, http://arxiv.org/abs/1203.4565)

Significance and Impact
The Heisenberg model is fundamental for describing 
quantum magnetism, superconductivity, and charge 
density waves. Beyond 1 dimension, the properties of the 
anti-ferromagnetic Heisenberg model are notoriously 
difficult to analyze.  Exploiting analytical tools from 
discrete optimization, a team led by Sandia National Labs 
has developed new algorithms to rigorously approximate 
hard-to-compute properties of this model beyond 1-D.

Research Details
– The researchers introduce a new quantum Hamiltonian model 

that simultaneously generalizes the quantum Heisenberg anti-
ferromagnet and hard classical graph partitioning problems.

– A new classical algorithm produces approximate solutions for 
the above model that are mathematically guaranteed to be 
relatively close in quality to optimal quantum solutions.



Highlight 5 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

 Approximate Solutions for Quantum Heisenberg Models via Discrete Optimization

New maximum-energy version of the antiferromagnetic Heisenberg model, 
generalizing the fundamental Maximum Cut discrete optimization problem:

We obtain the first nontrivial rigorous approximations for these problems: 
0.498-approx via a product state, where 1/2 is best possible for product states
(also 0.649-approx for XY model, where 2/3 is best possible for product states)

• The hard-to-solve Heisenberg maximum energy optimization problem is 
relaxed to an easier-to-solve semidefinite program

• A generalization of the celebrated Goemans-Williamson hyperplane 
rounding method produces an approximate max-energy product state



Optimally Controlled Quantum Optimization

Bang-bang: QAOA, VQE, Spin 
pulse echo, ...

Adiabatic: QAO, Quantum 
annealing, ...

Pontryagin’s  Minimum Principle
⇓

Optimal controls are bang-bang [1]

: “Easy” Hamiltonian (e.g. TFIM)
  Ground state = Initial state

: Cost Hamiltonian 
  Ground state = Global cost minimum

O(1)
No dependence  on spike 

parameters!

QAO [2] QAOA-1

Key intuition: QAOA-1 samples local gradient on hypercube, and 
imparts a momentum kick to wavepacket, allowing barrier jumps.

[1] Z.C. Yang et al., Optimizing Variational Quantum Algorithms using 
Pontryagin's Minimum Principle, Phys. Rev. X 7, 021027 (2017).

[2] L.T. Brady, W. van Dam, Spectral Gap Analysis for Efficient Tunneling in 
Quantum Adiabatic Optimization, arXiv:1601.01720v2  (2016).

General Framework

Quantum-inspired 
Classical Heuristic

?

Example: Ramp with Spike

Highlight 6 [Aniruddha Bapat, Stephen Jordan]



Highlight 7 [Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, Chunhao Wang]

 Quantum-inspired classical sublinear algorithm for solving SDPs with low-rank constraints

Scientific Achievement 
A quantum-inspired classical algorithm that 
solves low-rank semidefinite programs 
(SDPs) as efficient as best-known quantum 
algorithms.

Significance and Impact
Since SDP is ubiquitous in optimization, our 
work provides general understanding about 
how quantum algorithms can motivate 
classical optimization algorithms.

  

Chia et al., arXiv:1901.03254

Semidefinite programming

Quantum-inspired classical input



Highlight 7 [Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, Chunhao Wang]

 Quantum-inspired classical sublinear algorithm for solving SDPs with low-rank constraints

  

[1] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding 
low-rank approximations, Journal of the ACM 51 (2004), no. 6, 1025-1041.

[2] E. Tang. A quantum-inspired classical algorithm for recommendation 
systems, Proceedings of the 51st Annual ACM Symposium on Theory of 
Computing (STOC 2019), 217-228, 2019, ACM.

Algorithm:



Highlight 8 [Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wu]

 Sublinear quantum algorithms for training linear and kernel-based classifiers

Research Details:
• We follow the classical state-of-the-art[1], a primal-dual algorithm; we give quadratic 

quantum  speed-ups for both the primal (multiplicative weight) and the dual (online gradient 
descent)

• Our algorithms use the standard quantization of the classical input and generate the same 
classical output, suggesting minimal overheads for end-to-end applications

[1] K.L. Clarkson, E. Hazan, and D.P. Woodruff, Sublinear optimization for 
machine learning, Journal of the ACM 59 (2012), no. 5, 23. Li et al., arXiv:1904.02276, ICML 2019


