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Project summary

Goal: New quantum techniques and algorithms from the interplay of
guantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states

of physically-inspired Hamiltonians Convex and gradient-based optimization

Variational approaches and QAOA Convex/semidefinite relaxations

i ' - New ML-inspired optimization problems
Adiabatic quantum evolution w Inspl ptimization p

Quantum Machine

Simulation Learning

Sampling from max-entropy distributions

Hamiltonian simulation




Research Strategy

Optimization

Quantum approaches for
optimization

[Childs, Gharibian, Grace, Jordan,
Parekh, Rudinger, Swingle, Wu]

New quantum algorithms for
semidefinite and convex
optimization, optimally
controlled optimization
techniques

Highlights 4,5, and 6

Machine Learning

Quantum linear algebra,
learning quantum states, and
tensor decompositions

[Grace, Liu, Rudinger, Somma, Subasi,
Swingle, Taylor, Wu]

New quantum algorithm for
solving linear systems

Highlight 1

Simulation

Quantum field theories,
Hamiltonian simulation,
approximate ground states

[Baczewski, Childs, Gharibian, Jordan,
Parekh, Preskill, Sarovar, Sommal]

New quantum Hamiltonian
simulation algorithms, protocols
for thermalization, and classical
algorithms for approximating
ground states

Highlights 2, 3, and 5




Highlights



Highlight 1 [vigit Subasi, Rolando Somma, Davide Orsucci]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

Scientific Achievement -
A quantum algorithm to solve linear systems | Given A X = b, the goal is to prepare

of equations much more efficiently than the quantum state |x) o< (1/A4)|b)
classical computers
Significance and Impact Eigenstate path

Evolutions induced by simple Hamiltonians
prepare a quantum state that encodes the
solution to a linear system of equations. This
new idea will find applications in Machine

Learning and Optimization, where linear
systems play an important role

Research Details
— A Hamiltonian path is built such that the ground
states (or other eigenstates) encode the solution to
an increasingly difficult linear system of equations

— Avariant of adiabatic quantum computing allows Schematic of the quantum algorithm for linear systems: To prepare
one to prepare the grou nd states or eigenstates a quantum state that is proportional to the solution of a linear system

— The complexity of our method is given by the total of Equatiuns,. evolutions .under certain Han"!iltonians are required.
These evolutions can be implemented efficiently on a quantum

evolution time and is shown to be optimal computer in many cases, achieving an exponential speedup.

¥. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).



Highlight 1 [vigit Subasi, Rolando Somma, Davide Orsucci]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

Hamiltonians and linear systems

We observe the property
PLAX=PL b=0 The family of Hamiltonians is

AX=b ]
nd B®» (B'B) x=0 H(s) =B'(s)B(s) ,B(0) =P;, ,B(1) =B

The randomization method (RM) s. Boixo, E. knill, and R. Somma, Q. Inf. Comp. 9, 0833 (2009).
A variant of adiabatic quantum computing in which the parameters of the Hamiltonian are

changed discretely and the evolution is for a random time. The time complexity is
L? | L isthe path-length of the state encoding the solution
Trm ¢ A -/ isthe smallest spectral gap of the Hamiltonians
€ is the accuracy of the state preparation

Important variables for this problem

The path length satisfies 7, = O(log k) 21002 Polynomial dependence in
Tarm X i 108 (K) condition number and no

The spectral gap satisfies A = 0(1/1{2) _ € dependence in dimension
Same tlmeHcglr_anexny as imply quantum speedup

K is the condition number of A.
Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).




Highlight 1 [vigit Subasi, Rolando Somma, Davide Orsucci]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

Spectral gap amplification R. Somma & S. Boixo, SIAM J. Comp. 42, 593 (2013)

The gap-amplified family of Hamiltonians is:

H(s)=B(s)®c" +Bl(s) @0

Important variables for this problem ) :
q Linear dependence in

The path length satisfies L = O(log x) k log? () condition number results in
- IrM X ——= an optimal quantum

¢ algorithm for linear systems

The spectral gap satisfies A = O(1/k)

~ Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).

Experimental verification of new algorithm:

Experimental realization of quantum algorithms for linear system inspired by
adiabatic quantum computing .

NMR, 4 qubits

Jingwei Wen!,* Xiangyu Kong!,* Shijie Wei*, Bixue Wang!, Keren Li!, Yuanye Zhu!, Tao Nin®, T and Guilu Long 125

arXiv:1806.03295




Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems

Scientific Achievement

Example target
Designed and demonstrated protocol for generating system: cold
thermal states of many-body quantum systems using atom lattice,
coupled, driven ancilla spins. ESTSIl{mZng;CL}f‘b
Significance and Impact ® SystemAncilla
Quantum simulation of thermal states is useful for P " ®
extracting finite temperature properties of many-body .o o ’,‘ » B
guantum systems, and we have developed a practical " ,. ﬁ -
protocol for doing this. N’}
Research Details fi\
Thermalizing a many-body quantum system requires L

coupling it to an engineered reservoir. The conditions
required for thermalization are known if one has access  Schematic of protocol: Ancilla systems that are
to a macroscopic reservoir, but this is not typical. optically pumped to local thermal states are coupled

We have developed a protocol that results in to the system to thermalize. The resonant energy of

th lizati ing dri dissipated il ins that the ancilla systems are swept across the spectrum of
ermalization using driven, dissipatea anciilia spins tha the primary system, and over a few sweeps this

are coupled to the system in a way that results in dynamics generates a thermal distribution in the
engineered energy exchange. principal system.

Numerical and analytical results demonstrate that the
steady-state of the engineered dynamics is the desired
thermal state of the many-body system.




Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems

System Ancilla A time-dependent term is added to
the ancilla energy to sweep the
system’s full energy spectrum.

Q) = Apf(t) M 5)

=— Hﬁi(f) = Hs:t;s - Z T+ Z gm T4 ;T:TT

—_ =1 m=1

Ancilla optically
pumped to thermal
df(t :
state ‘%‘ << G ~ I << HHWSH,VTH, [
(ir

e ————————
™ — ,.Tur, AT

Timescale Hierarchy

A reduced master equation describes system evolution
when the ancilla dynamics is averaged over

| ‘ Operator on Sys;err: ,
p=g") tw) (X(w)pxi(w) - §{X?(w)X(w)=p}) X(w) = 2 .\e> (el oy |€) (e

Ancilla Correlation Functions
ID{J (t)F 4 Pl (t)F

B w0 (5 - (w4 ()




Highlight 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems

Two Site
stem wi W
ﬁi’ys = 01 — —02 + Joolto? + Jyaéaz + J,olo?
2
s o q (O-;T;)
V' !
+ 2
= Aqz sin“(wt)
max min
maﬂ? Esys Esys

Markovian Evolution of Random Initial State

0.8 0.8

07t
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05t JI

0.4 | /

How close is the time averaged state to thermal

state? A= lpw, —
¥ X
— M
e
8) = ———— fo dtLi =
pth( ) .—J_-T(e_ﬁf_‘r) T |:(-j :| ;th
Ongoing Research: | |
¢ Analytical _ .
calculations to Y O E Y R RO

approximate the ) C
time-averaged,
effective generator

of evolution
* Prove fixed point of the dynamics and provide a bound on

thermalization time.

« Demonstrate this scheme is generalizable to generic syste
Hamiltonians.



Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]
Faster quantum simulation by randomization

107
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Randomized

104

Comparison of the numi:IJer of trotter steps
between deterministic and randomized first-
order product formulas. Error bars are omitted
when they are negligibly small on the plot.
Straight lines show powerlaw fits to the data.

Research Details

Scientific Achievement

Stronger product-formula bounds were proved by
randomization, and their advantage for near-term
guantum simulation was evidenced by numerics.

Significance and Impact

Product formula algorithm is a straightforward yet
surprisingly efficient approach to simulating quantum
dynamics on a quantum computer. Recent results show
that this approach can outperform more sophisticated
algorithms, and it is important to understand why it has
such outstanding performance.

— Proved stronger error bounds for product formulas by randomizing how the terms in the

Hamiltonian are ordered.

— Showed that randomized bounds can be asymptotically better than previous bounds that exploit
commutation between the terms in the Hamiltonian.

— Numerically compared the deterministic and randomized product formulas, showing improvement
even with respect to the empirical performance.

Andrew Childs, et al., arXiv:1805.08385 (2018)
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Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]

Faster quantum simulation by randomization
Quantum (Hamiltonian) simulation

Given a description of a Hamiltonian H and an evolution time t, perform U(t) = e " up to
some error €.

Product formula algorithm
. Targetsystem H = Zé‘:l o Hy
0<ay <1
His a tensor product of Paulis (up to a sign).

o Can use the first-order product formula

L r 9
e—i—':t Z;le (ijfj o H e—i%mﬂjﬂj < O (Lt)
B r

j=1

e Generalizations to (2k)th-order are known [Suzuki 92].

o Advantage: straightforward; can empirically outperform more sophisticated
simulation algorithms.

e Problem: error bounds are loose in practice.
Andrew Childs, et al., arXiv:1805.08385 (2018)




Highlight 3 [Andrew Childs, Aaron Ostrander, Yuan Su]

Faster guantum simulation by randomization

New bounds by randomization

* We prove stronger bounds by
randomizing how terms in the
Hamiltonian are ordered, e.q.,

1
NHL AH : (GAH-LB)\HQ 4 GAH2€>\H1)

e New error bound for first-order formula:

O((LQS)

T

improving over the old bound

o(+)

* We also derive new bounds for higher-
order formulas.

* Numerical simulations show
improvement even with respect to the
empirical performance.

10°

First order

0 Deterministic

o Randomized

104 ; =
i1 T o ) 10

L

Comparison of the number of trotter
steps between deterministic and
randomized first-order product
formulas.

Andrew Childs, et al., arXiv:1805.08385 (2018)




Highlight 4 [Shouvanik Chakrabarti, Andrew Childs, Tongyang Li, Xiaodi Wul]

Quantum algorithms and lower bounds for convex optimization

We give a quantum algorithm that can optimize a convex function over an
n-dimensional convex body using O(n) queries to oracles that evaluate the
objective function and determine membership in the convex body. The best
known classical algorithm [1 uses 0(n?) queries.

Problem: minimize f(x) subject to x € K, where f and K are convex.
Classical Oracle: Quantum Oracle:
. MEM(x): Decide whether x € K |:> MEM: [x)[0) = |x)|S[x € K])
“. EVAL(x): Compute f(x) EVAL: [x)|0) = |x)|f (x))

* We use Jordan’s gradient estimation algorithm(?! to construct a separation oracle
for points outside the convex body, using only O(1) queries to the oracles.

* We then use the ellipsoid method to solve the optimization problem by applying
the separation oracle O(n) times. The total query and time complexities are
0(n) and 0 (n3) 11, respectively.

* For both oracles, we also prove an ﬁ(ﬁ) quantum lower bound.
Chakrabarti et al., arXiv:1809.01731

[1] Y.T. Lee, A. Sidford, and S. Vempala, Efficient convex optimization with membership [2] S.P. Jordan, Fast quantum algorithm for numerical gradient estimation,
oracles, Proceedings of the 31%t Conference on Learning Theory (COLT 2018), 1292-1294. Phys. Rev. Lett. 95.5, 050501 (2005).



Highlight 5 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

Approximate Solutions for Quantum Heisenberg Models via Hyperplane Rounding

Discrete optimization techniques enable new rigorous approximations of low-energy states of
guantum Heisenberg Hamiltonians, a central topic in condensed matter physics.

Significance and Impact
The Heisenberg model is fundamental for describing
guantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of the
anti-ferromagnetic Heisenberg model are notoriously
difficult to analyze. Exploiting analytical tools from
discrete optimization, a team led by Sandia National Labs
has developed new algorithms to rigorously approximate

Anti-ferromagnetic Heisenberg model: roughly hard'to'compUte properties of this model beyond 1-D.

neighboring quantum particles aim to align in Research Deta"s

opposite directions. This kind of Hamiltonian ] . .
appears, for example, as an effective Hamiltonian ~ — T he researchers introduce a new quantum Hamiltonian model

for so-called Mott insulators. that simultaneously generalizes the quantum Heisenberg anti-
(Image: Sachdev, http://arxiv.org/abs/1203.4565) ferromagnet and hard classical graph partitioning problems.

— A new classical algorithm produces approximate solutions for
the above model that are mathematically guaranteed to be
relatively close in quality to optimal quantum solutions.



Highlight 5 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

Approximate Solutions for Quantum Heisenberg Models via Discrete Optimization

New maximum-energy version of the antiferromagnetic Heisenberg model,
generalizing the fundamental Maximum Cut discrete optimization problem:

Max Cut Hamiltonian:

|:> Quantum Heisenberg generalization:
X —2z)

LU = XiX; =YY, — Z;Z;)

* The hard-to-solve Heisenberg maximum energy optimization problem is
relaxed to an easier-to-solve semidefinite program

A generalization of the celebrated Goemans-Williamson hyperplane
rounding method produces an approximate max-energy product state

We obtain the first nontrivial rigorous approximations for these problems:
0.498-approx via a product state, where 1/2 is best possible for product states
(also 0.649-approx for XY model, where 2/3 is best possible for product states)

Our results extend to approximating max-energy of any "symmetric” 2-local Hamiltonian:
3
I — Yie=1y@i,iXi + Bii¥i + ViiZi) (i jXj + B jY; + Vi jZj)




Highlight 6 [Aniruddha Bapat, Stephen Jordan]
Optimally Controlled Quantum Optimization

General Framework Adiabatic: QAO, Quantum Bang-bang: QAOA, VQE, Spin
d annealing, ... pulse echo, ...
Ehﬂ) = —iH(u)[y) . H H H
u
H(u)=(1—u)Hy+uH;
0
H| :“Easy” Hamiltonian (e.g. TFIM)
Ground state = Initial state
H : Cost Hamiltonian
Ground state = Global cost minimum
Example: Ramp with Spike 1 QAO QAOA-1
N ' i ' '
Mm{------—------—-——-—--—-——--- Exponcntial
| o~ 0.8 F Gemins O e_gﬂ[2n+s—|1,ﬁz g -
| : =12 ’
I < 06 L <
C(“{U) n’ : %" -%::? %0
: | @ 04| ""‘hw A
>0 | B i1
. : £ 0.2 L £
. I = Corllstzr‘ntl
[] n?—l Jrlr D Igmlﬂ I I .
mw = |;;f:lz.j < Zy 0 01 02 03 04 0.2
= Width Scaling Power o« Width Scaling Power a

—

[1] Z.C. Yang et al., Optimizing Variational Quantum Algorithms using [2] L.T. Brady, W. van Dam, Spectral Gap Analysis for Efficient Tunneling in
Pontryagin's Minimum Principle, Phys. Rev. X 7, 021027 (2017). Quantum Adiabatic Optimization, arXiv:1601.01720v2 (2016).




Highlight 7 [Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, Chunhao Wang]

Quantum-inspired classical sublinear algorithm for solving SDPs with low-rank constraints

Scientific Achievement

A gquantum-inspired classical algorithm that
solves low-rank semidefinite programs
(SDPs) as efficient as best-known quantum
algorithms.

Significance and Impact

Since SDP is ubiquitous in optimization, our
work provides general understanding about
how gquantum algorithms can motivate
classical optimization algorithms.

Research Details

Semidefinite programming

max Tr[CX]

st. Tr[A;X]| <a; Vie][m]

X >0

Quantum-inspired classical input

Give me a

row index >

Row Sampler

— output ¢ w.p.

Give me a column

index for row i >

Column Sampler

—— outout j w.p.

We give a quantum-inspired classical algorithm that given an SDP with m constraint
matrices, each of dimension n and rank r, solves the SDP in time O(m - poly(logn, r)).

Technically, our approach aligns with the recent studies of quantum-inspired machine

learning algorithms and proposes new ingredients for matrix arithmetics.

LAG.I®

LI
‘
[ All%

Alig)*
AL

Chia et al., arXiv:1901.03254



Highlight 7 [Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, Chunhao Wang]

Quantum-inspired classical sublinear algorithm for solving SDPs with low-rank constraints

1A T][CX] A|g0rithm: Do this for at most 16lnn/e? times
st. Tr[A;X] <a; Vie|m] y | ,_w},. .
sl = |'x.:-"._tf-_.-.l.-_.
X =0 A
Input: Sample-based foitia o of solution - J— Found A,,..... A,
L n/ M Find all A; such that Tr[A;p| = a; + ¢

data structure

|M (i)

No such A; ean be found

M (i, 1) + |M(i, 2)]? [ M@, 3)]% + | M (i, 4))2 Output p as a feasible solution | o
ow to compute these effciently
Binary search to find the optimal solution

(|M0 DF M 1)) (M2, MG 2)) (M5, 3)%, M6, 3)) (|5, 4))%, M(3,4))

I * Sample a small matrix, solve SVD; correctness promised by [FVK04]!]
Pl W I
o 4 * Two technical contributions for solving SDP:
- Weighted sampling: sample from A; + -+ A,,,;
" - Matrix Exponentiation: exp[A; + --- + A,;,] by inner products of both

W S oiug

the (truncated) U and V of the singular value decomposition (SVD)

[1] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding [2] E. Tang. A quantum-inspired classical algorithm for recommendation
low-rank approximations, Journal of the ACM 51 (2004), no. 6, 1025-1041. systems, Proceedings of the 515t Annual ACM Symposium on Theory of

Computing (STOC 2019), 217-228, 2019, ACM.
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Highlight 3 [Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wul]

Sublinear quantum algorithms for training linear and kernel-based classifiers

Scientific Achievement: A quantum algorithm for training classifiers over n d-

dimensional data running in time O (¥n + Vd), a quadratic speed-up in both n and d
compared to the state-of-the-art. A tight lower bound is also established.

Xy > o Problem: Given n data X4, ..., X,, € R% and a label vector
T — 0 y € RY classification finds a separating hyperplane w
XTw < —¢ such that y;X/w > 0 for any i € [n].

Input: Coherent oracle access:
Oli)[)10) = |i)j)IX;;)

Generality of results: The classifier can be kerneralized:
X = W(X), where ¥ can be Gaussian or polynomial kernel.

Research Details:

* We follow the classical state-of-the-art!], a primal-dual algorithm; we give quadratic
guantum speed-ups for both the primal (multiplicative weight) and the dual (online gradient
descent)

* OQOur algorithms use the standard quantization of the classical input and generate the same

classical outrput sugugestin% minimal overheads for end-to-end applications
[1] K.L. Clarkson, E. Hazan, and D.P. Wo uff, Sublmear optimization for LI et aI. arX|v190402276 ICML 2019

machine learning, Journal of the ACM 59 (2012), no. 5, 23.



