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What Are We Doing? E
Brine Availability Test in Salt at WIPP (BATS) I
Monitoring brine distribution, inflow, and chemistry from heated i

salt using geophysical methods and direct liquid & gas
sampling.
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Motivation and Background

Why are we doing this?



5 \Why Salt?

Long-term benefits
> Low connected porosity (0.1 vol-%) and permeability (< 107%% m?)
°  High thermal conductivity (~5 W/(m - K))
°  No flowing groundwater (£ 5 wt-% water)
o Hypersaline brine is biologically simple, has less-stable colloids

e Cl(~190 g/L) in brine reduces criticality concerns

o Excavations, damage, and fractures will creep closed

o Mined salt reconsolidates and heals to intact salt properties

Near-field short-term complexities
o Hypersaline brine is corrosive
o Salt is very soluble in fresh water

°  Brine chemistry requires Pitzer

o Salt creep requires excavation maintenance



6 |Why Focus on Brine in Salt?

* No flowing groundwater, but not dry (< 5 wt-% water)

Fluid inclusions

* Water sources in salt
1. Disseminated clay (<5% total; ~25 vol-% brine)

2. Intragranular brine (fluid inclusions; 1 to 2 vol-%)
3. Intergranular brine (between salt crystals; ~0.1%)

* Total brine content correlates with total clay content
* Three types of water respond differently to heat

* Three waters have different chemical / isotopic composition
* Porosity (#3) increases due to damage — primary flow path

Q: How do 3 water types contribute to Brine Availability?

20 mm scale bar



Why is Brine Important in a
Repository?

Brine Availability: Distribution of brine in salt & how it flows to
excavations

* Initial conditions to post-closure safety assessment
> Brine migration and re-distribution
> Evolution of disturbed rock zone (DRZ) porosity and permeability

* Brine causes corrosion of waste package / waste form
* Brine is primary radionuclide transport vector
‘LIUId back-

oressure can resist drift creep closure
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Why a Heated Test?

Impact heat-generating radioactive waste
would have on salt

How do 3 brine types respond to heat
- Thermal expansion of brine

o Fluid inclusions move under a thermal
gradient

> Hydrous minerals dry out

How does salt mechanically respond to
heating
- Creep is accelerated at higher temperatures

- Rapid changes in temperature cause
damage




9 {\What Data are We Collecting?
Heated

Two arrays: Heated / Unheated_ A

Behlnd paCker e . 5 " b “::H:::e;":gmrav
> Circulate dry gas o -
> Quartz lamp heater (750 W) -

- Borehole closure gage .. = = e

aaaaaa

Samples / Analyses
> Analyze gas stream (natural / applied tracers and isotopic makeup)
> Collect liquid brine (natural chemistry and natural / applied tracers) ~ Cross-section central borehole

Pressure, Humidity

> Collect cores (X-ray CT and fluorescence at NETL) e

Gas inlet (routed near

pl
back)
Borehole Closure
Packer C;ntrali:er Gage

Geophysics
o 3x Electrical resistivity tomography (ERT) e
> 3x Acoustic emissions (AE) / ultrasonic travel-time tomography.. .

Controller ‘.'

o 2% Fiber optic distributed strain (DSS) / temperature (DTS) sensi

Pressure Sensors

Gas Inlet

AY
Radiative Heater Element

]

Satellite Observation Borehole



10 \Why are These Data Useful?

Brine composition samples / H,O isotope data
> Observe change in brine sources with temperature

Geophysics

> Map 4D evolution of saturation / porosity / permeabilie

Temperature distribution
> More brine available at high temp (inclusions + hydrous minerals)

> Thermal expansion brine driving force
o Salt dry-out near borehole |

Gas permeability and borehole closure
> Thermal-hydrological-mechanical evolution of salt during heating

Tracer migration through salt
> Monitor brine movement through salt damage zone



11 |Why use Horizontal Boreholes with Packers? E

Damage measurements

"o Disturbed Rock Zone (DRZ) borehole
_ nc:cx BOLTS > CLAY SEAMS I
o\ - senllluﬂou spaLLng 0. i
AT -Packer ___(, IN BACK ALONG RIB i
|

FRACTURES ‘"-‘- e I

= w7

Heater
: N S S orns & Stormon t (1988) e
= e scw Near-drift vertical fractures » |
Anhydrite layer below floor

We want to characterize DRZ, avoiding most damaged areas :

* Horizontal borehole avoids clay & anhydrite layers (e.g., MB139) in fl
* Inflatable packer isolates heater from near-drift vertical fracutres



Test Detalls

What data will be collected?

What do we hope to learn?



13‘TestLocation
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4 Borehole Arrays  prmopes,

SL = Seal
D =D20 + Tracer Source
E = ERT Electrodes

F = Fiber Optic {T and/or Strain) B

SM = Sampling
HP = Heater and Packer

Acoustic Emission (AE1

N

Source (D)

ERT(ET)

DA L™

Fiber (F1)

Seal (SL)

“Samp ing (SM)

ERT (E
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51 Core Analyses

Cores from 4.8” boreholes
X-Ray Computed Tomography (CT)

o Medical and industrial scanners

X-Ray Fluorescence (XRF)

> Elemental composition on core surface

Sub-core Microstructural Observations Distribution in 3D:

> Observe fluid inclusions Clay & .
Fracture porosity

o Observe dislocations and salt fabric Fluid inclusions

Post-test overcore for comparison (12" core)
o X-Ray CT and microstructural observations

What type of brine & how did test change salt?

20 mm scale bar =

Imaging by Dustin Crandall at National Energy Technology Laboratory (NETL)



| |
Brine Inflow I

L I LY BN R A I

Gas flowrate + humidity 5 11l Vertical WIPP boreholes
. . §75.70; —1 - R :
Brine inflow to boreholes fyl : A Room A: 50°C
> Highest inflow rate initially o -
° Rate exponentially decays with time :' g‘
Brine inflow jumps at +AT
. . Hohlfelder (1979)
More brine at higher temperatures ol

Permeability / brine saturation of salt Salt Block Il (1-m lab test)

brine flux g/m* fday

te, g/day
c388s 88388888588
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days since borehole drilled Kuhlman et al. (2017) Nowak & McTigue (1987)




171 Brine Composition E

Liguid brine samples vacuumed from back of De-ionized water

' y + WIPP salt
boreholes
Distinguish sources of water in sajt? _——_ : Wips .
> Not all brine is same composition § B ' - Yy .’Iff%
> Different formations at WIPP N ©° . MU0

o “Natural” brine vs. dissolved salt

=
&
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Add / monitor liquid tracers
- Perrhenate (NaReQO,)

- Blue fluorescent dye
o |sotopically distinct H,O

=
L

Na* /CI~ (weight ra

=
B

|
. I
Data will inform: , | | | |

> Contribution of 3 brine types (brine) |

> Advection / diffusion / reaction (tracers) L




18 | Gas Stream Composition

Analyze gas stream in-drift real-time

Gases derived from
o Dissolved gas in brine (~15 MPa in far fiel
> Geogenic gases from salt (e.g., He & Ar)
- Added gas tracers (Xe, Ne, Kr & SF)

SRS quadrupole
mass spectrometer
(QMS) gas analyzer

Isotopic makeup of humidity stream

o Info on brine source (fluid inclusions vs.
clays)

Data will inform:
> Gases produced from heating salt -
> |[sotopic identification of 3 brine types ricarro cavity ringdown

Spectrometer (CRDS)

> Advection / diffusion /reaction (tracer)
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19 | Acoustic Emissions (AE)

Listen to salt with piezoelectric

transdu

Passive AE

o Salt cracking during heat up & cool-down
> Triangulate AE sources around heated

borehole

> AE correlated with permeability increases

Active AE

> “Ping” sensors while listening, estimate travel

times ‘
- Lower velocity in damaged rock

a E-Y

Data will inform:

- Where & when damage occurs
o Estimate damage extent

> Monitor damage evolution
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_, | Electrical Resistivity Tomography (ERT) and Fiber
Optics

ERT: Measure voltage from
applied current at every
electrode pair
> Multiple AC frequencies (1-10 Hz)
o Electrodes grouted into boreholes

> Data will inform evolution of brine
content (i.e., dry-out)

Resistivity

Fiber-optic distributed sensina ...
> Scattering in grouted fiber-optic ;‘Y
- Measure temperature and strair§ ol L&

> Sub-mm resolution in space -~ .4 W‘W,w

> 1 Hz resolution in time T e

ength (m




21 | Test Status

Boreholes drilled (Feb-Apr 2019)

Installed instrumentation (May-Aug 2019)
Power turned on in drift Aug 2019

Plumbed and wired experiment (Sept-Oct 2019)

First test Second test

Test Pre-test

Heati Cool-d Heati Cool-d
Installation  background eating of-down eating ol-down

. ) gas tracers liquid tracers
N J C J

N
3-4 weeks Y Y
Today ~6 months ~6 months



Salt Annulus

\ Cement Plug
r 2

22 Cementitious Seals

Emplace Pre-fabricated Cement Plug
> Snug fit into satellite borehole

o Monitor seal evolution as borehole closes
o Strain gages inside plugs

o Upscale GRS Lab Seals Tests

Overcore Post-test to Analyze Interfac

_v,/
L—.L.c..-ﬂ e

Czaikowski & Wieczorek (2016)

Compare:
> Sorel cement (MgO) and salt concrete plugs

- Heated and unheated conditions

Observe salt / brine / cement interactions




Summary and Looking
*IForward

Not the first heater test in salt or at WIPP

Focus of test is brine availability

o Distribution of different types of brine
-How does damage control brine migration
-Can we predict amount and fate of brine

Use new:
- Geophysical methods (ERT, AE, fiber)
-High-frequency in-drift analytical methods (CRDS, QMS)

New generation of repository scientists underground
Advance generic salt science for heat-generating waste

I I Em B U



24‘Thank you!

National
Laboratories

~

rrereer |I||

BERKELEY LAB

« Los Alamos
NATIONAL LABORATORY
EST.1943




