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Recent Developments in
Organic Glass Scintillators
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Introduction

Scintillator: A material that emits fluorescent pulses upon exposure to ionizing radiation
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Pulse shape discrimination: Time resolved
measurements allow separation of scintillation events
resulting from different excitation sources, e.g. gamma
-ray vs. fast neutron.
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Material examples

Inorganic: Csl (Tl) for gamma light yield and energy resolution, “CYLC” for PSD
Gaseous: *He, BF; for neutron detection

Hybrid: organic perovskites for gamma light yield and energy resolution
Organic: single crystals, liquids, polymeric blends, molecular organic glasses




+ 1 Organic Scintillator Comparison

Glass Melt/Rubber

= M olecular Organic Glass Scintillator (OGS ) s
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0 50 100 150 200 250
Temperature (°C) I

trans- Organic Glass 40 % FS- PVT EJ-200 — -
Stilbene Scintillator (commercial
(OGS)* plastic scint.) |

Type Single Amorphous Amorphous blend  Amorphous blend
crystal

Production Single Melt-cast to Melt-cast to shape Melt-cast to
crystal shape shape
growth

Gamma-ray 15,700 18,200 14,300 10,000

Light Yield photons/Me photons/MeV photons/MeV photons/MeV

Vv

« \R&RiIRWPSD quabty of OGS.43 less than stibene, gammasray
light yield is improved, and melt-casting enables custom
detector geometries

* Much of the scintillation performance of OGS is maintained
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s | Three Methods of Stabilizing the Amorphous State

Formulation Casting Process Coatings

)
Vacuumed Unvacuumed

,' Uncoated, 1.5 PVA coating, 1.5
: ‘ months at 60°C months at 60°
ths at 60°C ths at 60°C

Melt
Me Me %)
< || Cast
5 (We've also demonstrate
Compound P1 5 Cool vapor-deposited Parylene-C
(507 InFVD) gl and epoxy coatings as
|

surface-stabilizing)
Time

[Image after one week at 80°C]

nitu

Each strategy can independently improve amorphous stability by orders of magi




s | Melt-Casting Enables Form-Factor Flexibility and New
Applications

Temporal response of
concerted scintillation
events reveals particle
trajectory’ (single-
volume scatter
_camera)

Pixelated array of 64 5x5x50 mm OGS
elements prepared by melt-casting

2
“3-D printing” of OGS feasible with OﬁBoron thermal neutron capture

glue gun (shown) or injection
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Ratio of Charge

U 1 .2 .37' FE 5 6
A. Galindo-Tellez et al JINST 16 (2021) P04013 Relative Light Yield [*'Am Photopeak]
2L.Q. Nguyen, G. Gabella, B.L. Goldblum et al Nuclear Inst. and Methods in Physics Research, A 988
(2021) 164898
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Fluorenylsilane-Polymer Blends: Initial Studies
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Advantages of Blending FS with Polymer

* Mechanically more robust than pure OGS
« Excellent stability against recrystallization

* Relatively low cost, easily scalable
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Disadvantages

Scintillation performance diluted relative to OGS
More challenging to fabricate defect-free detectors



g | Optimizing Pulse Shape Discrimination in OGS-Polymer
Blends

Formulation: 50 % P2, 0.2 % bis-MSB in PVTMI matrix (stock solution)
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i
 PSD improved beginning at 20 % P2 in PVT/PS without detriment to light yield ]
« PMMA incorporation also allows improvement to PSD at 140°C reaction temp.

* Green points are 25/25/50 PMMA:PVT:0GS, polymerized with 80-140°C ramp l
* Possibilities for lower index, scintillating PSD materials and improved mechanical resilie

OGS

EJ-278




o | Residual Vinylaromatic Monomer Quenches PSD

137Cs gamma-only scintillation

E L =
wof P2 +0.2 % MSB s sl
i . (P2 + 0.2 % MSB) + 3 % VTMI : (P2 + 0.2 % MSB)
= Ph Ph &000 —| +
2 sl i G | o wmw w F + 3 % mesitylene
=™ = > &
S = Compourd F2 bin M5B 3 S " T;,j/
= 2000 H L
w0l i i WTMI {vinyaluene, w00 [ 1
ImE. ‘LLVLL%IFUV HN_LL' — "‘ﬂ,_,__\‘rﬂ_l Mﬁr_lfh{:'uuldlsmr‘i:l 2-‘1-'5 I_‘_LL"-'\-\,,_‘H.,_“_\_'“ o mesitylans I
= e, el 1 1600 s L woalk 00T ] "L
50 - "[__L 58 "|_I i "I__LL
e T e T e e e ST UOTPOUOT IV OOTOTTY v
n/y Pulse Shape Discrimination
100. 1[0
90."
8" g g
£ "l neutrons | £ £
O s} ol e ®
g | g S
a a a
& & &

| o gammas

30

PRRICEN [T T T T SN N T N T T T N T T T I
4000 SO000

PO R T
6000 7000 B000
amplitude (2.u.)

.. Gammas + neutrons

7
amplitude (a.u.)

PSD returns upon heating VTMI sample (residual monomer polymerizes)

Reference on styrene quenching benzophenone/phenanthrene phosphorescence: A. S.
Vinogradova and A. N. Faidysh lzvestiya Vysshikh Uchebnykh Zavedenii, Fizika (1974),

17(4), 149-51.
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[
Molecular modeling effort underway to better understand the excited state interactions responsil



Aging Studies of OGS-loaded and Other PSD Plastics

OGS plastics are compatible with fog- Comparison to Commercial PSD Plastics
resistant compounds developed in CWMD
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(init., 1.5 mo. aged) 1.5 mo. aged)

50 % P2 in None 1.40,1.19 1.19,1.11
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and light yield degradation during
“ Epoxy 1.12, 0.99 1.43,1.19
accelerated aging
™ U EJ-276 None 0.97, 0.36 1.96, 1.10
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. s “ Poly(vinylalcohol) 0.99, 0.66 1.93, 1.47
e m EJ-299 None 0.86, 0.34 1.72, 0.95
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Scintillating “Nanoguide” For Advanced Neutron

Imagin
Goal: Develop ne%ostructured, scintillating optical fiber for advanced radiography and source

localization

Transverse Anderson Localization’

(a)

« Random distribution of discrete, disparate RI fibers at 100 nm scale leads to light confinement| effect
* This effect is hypothesized to lead to improved radiographic imaging resolution and light yield

* Ideal element size appears to be 1-2*A
Qualitative Draw Difficulty

SNL: raw material Incom: drawing
synthesis, radiation and thermal

a¥a | JaVaaVaVa

Melt-draw into thin 2 Easy
fibers, thermally 10 Easy
reprocessed in 20 e I
channel mold R y
g 40 Easy-Moderate I
. 50 Difficult, high MFI
- — ) o 75 Not possible without modification
1” x 12-16” rods, as- Thin mini-channels of P
cast SNL materials drawn at

"Mafi, A. Transverse Anderson localization of light: a tutorilarn%@im/, arXiv:1505.01109v2 [physics.optics]



P2-in-PS “Nanoguide” Scale-Up

12

4.5 kg of 2.5”
;658:;101: prepolymer diameter cylinders, 30 «
. Fused P2- = _
PS Co-draw with
0 Pack C|PCr|]8|Ith PMMA, collect
Fuse canes into hex Iber on square
hex. Wﬁ L 3 S =
1"x1°x2" elements Fyse, draw " it S
Nanoguide hex. 2 ey R /
Scmtlllatmg Sample ID Draw Process Outcomelyield /
5 scale

18 % wt P2 in NSA1 5 Successful, one

1x1x2”block :
NSA2 4 Successful, seven 1x1x2” Fuse into
PS blocks circle preform,
24 % wt. P2 in NSA3 4 Failed at second draw st
PVT step. Broken fibers, 1 cane draW
Nanoguide structure not
maintained

30 % wt. P2 in NSA4 3 Successful, three 1x1x2”
PS blocks
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FS-PS “Nanoguide” Characterization

Optical Transmission with Laser lrradiation

355 nm (41t emission)

0.00015 [
g g
o ——r— —
5 |
= 0.0001 |
@
c
2
»n
.
2
o
£ 0.00005
3 o L
a
or 1 1 1 1 1 L
0 10 20 30 40 50
Irradiation Angle (degrees from normal)
632 nm (light transport)
0003 T T T T ™
2
o
2
= 0.002
©
e
2
7}
s
I3
% 0.001
(=]
or L4

I I 1 1 1
0 10 20 30 40 50
Irradiation Angle (degrees from normal)

Light confining effect minimizes optical loss
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Scintillation Measurements

14000
— 5NG-24 % P2 in PS, PTFE wrap
12000 SNG-24 % P2 in PS, black tape
—SPG-24 % P2 in PS5, no wrap
10000 == EI-200, PTFE
s E1-200, black tape
» BODD
[T

137Cs irradiation

20040

2000

a 100 00 300 400
Channel [Pulse Height)

With PTFE reflector: Gamma-
ray light yield ~60 % of EJ-200
Without PTFE: minimal
change for SNG due to light

confinement

241AmBe mixed
nly irradiation

PSD Parameter

1006 o) i 40003 S (o] T 0
¥ m

PSD observed, as
anticipated for 24 % FS-PS
formulation



14« I Neutron Light Yield of Scintillating “Nanoguide” at

_,_/’1
LANL —
- Los Alamos
MATIONAL LABORATORY
— Light Yield of Test Scintillator Relative to Respective EJ200 Reference
Reference g 1.81 Test Scintillator Name
T ~ 100-7254-A
scintillator = 17 10067234
(EJ'ZOO) =< 161 100-7253-A
6A
g 15 | G1978
E 141 |« I”x 1" PS Nanoguide (Gen Il)
£ ] ||\« 1”x1”7 OGS (3-HF)
=5 12
Test x !
L] " ' I -
scintillator 8 La Ll ||
é Frame Number (Proportional to nTOF)

Light yield of equal areas

calculated for test vs. reference

scintillator across the available

neutron spectrum

* Nanoguide material using commercial scintillating PS has enhanced
neutron light yield across the full spectrum relative to non-light guiding EJ
-200 (FS-PS Nanoguide to be evaluated next)

« 3-HF OGS sample features green-emitting wavelength shifter that is
better matched to CCD sensitivity

Neutron images acquired
with variable neutron energy



15 ‘ Alternative Fluorophores for FS-polymer blends
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9,9-DMF

Compound P2 Compound M2 Compound MH2 Compound M1

Composition (1” Gamma-ray Gamma/Neutron
cylinder) scintillation light PSD FoM

40 % wt. P2 in PVT 1.43 2.18
35 % wt. M2 in PVT 1.45 1.84
35 % wt. MH2 in PVT 1.48 214
35 % wt. M1 in PVT* 1.48 1.66
20 % wt. 9,9-DMF in PVT 1.30 1.57
35 % wt. M1 in PMMA 0.98 1.28

*contains 0.1 % divinylbenzene crosslinker for mechanical reinforcement

« Dimethylfluorene unit is responsible for outstanding gamma-ray light yield and PSD
» Plasticization effect of M1 and 9,9-DMF compounds limits usable loadings

« PSD FoM in this series may be a function of fluorene packing density

* 9,9-DMF and “M” series compounds are more easily synthesized and purified than



6 I Summary

FS-polymer blends balance high
performance of OGS with improved

practicality
Fluorene compound loading in PS/PYT
0% 25 % S0 % 75 % 100 %
ai rpose” 1 . icld, I
inttor g B1200) | el tnd | Plastic renforced OGS
| Scintillation Ff;rfnrmmg
[
1 ]
[ — Fracture (oughness >
1
] ]
1 I

In-situ palymerizable at scale
+—————— Physical Blends and Reprocessing = 210°C ——

+——— Melt castable ~ 200°C ——

Scintillating Nanoguide 30-40 % wt P2 in
PS successfully scaled to 5 kg batches and
under investigation as neutron imaging

Solution processing method for OGS
enables new detector geometries and
applications
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New fluorene-based scintillator

mate@lb/ .

Compound MeP2
Easier synthesized version of P2

Stable glass without additives

9,9-dimethyl-9H-fluorene

0.0 s"\il,l-;""‘:

Compound M1

Primary fluorophore of fluorene-

based scintillating PMMA Commercially-available fluorene souce



