Thislpaperldescribesfobijectivejtechnicallresultslandlanalysis .JAnylsubiective views or opinions that might be expressed in SAND2021-9726C

helpaperfdojnotlnecessarilyfrepresentfthejviewsjofftheju.S | of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Sandia’s Uncertainty Calculator

A case study in the graded approach to software quality assurance

Collin J. Delker

NCSLI Workshop & Symposium
Orlando, Florida, 2021

DEPARTWENT OF

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department

ISandialNationalfLaboratoriesfislafmultimission laboratory managed and operated by National Technology &Engineering Solutions ofiSandia, LLC, aiwholly,owned 5+ _
International,Inc., for the U.S. Department of Energy's National Nuclear Security"Administration'under contract DE-NA0003525. ration under contract DE-NA0003525.

HOW TO WRITE GOOD CODE:

Why this talk?

» Software validation is required by ISO/IEC
CODE | 17025:2017, with little guidance on how to implement

* Most metrologists are not software engineers, yet
DoESN. NO custom in-house metrology software is common

ALMOST, BUT M5

BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.
Suncal is somewhere in here

AND START OVER.

GooD
CODE

https://xkcd.com/844/

/" OQutline
/4

* QOverview of Suncal Software

rd

* What is software quality?
* Graded approach to SQA
- Stages of Suncal software evolution and SQA

v
2

'/ Calculations:

Sandia Uncertainty Calculator (Suncal)

* GUM (symbolic) and Monte Carlo Uncertainty propagation
* Uncertainty in linear and non-linear curve fitting
* Measurement Decision Risk

« Calibration Interval Analysis i S
- Analysis of Variance, autocorrelation | e e e e e o
Usage: -

* Windows/Mac/Linux user interface

1.50-

« Command-line interface

]
w

Probability Density
= = et
[=]
(=]

* Python library

~
wn

0.50-

o
P
wn

o
o
=]

Free, open-source, GPL License I P L

T [ms]

e https://sandiapsl.github.io

https://sandiapsl.github.io

P Motivation for developing Suncal

But what about commercial software that does uncertainty calculations?

While other uncertainty software exists, we found it to be too limiting:

* No symbolic solutions to GUM equation

» Limited handling of units/dimensional analysis

* Limited complexity of model, limited number of input variables

* Too much hand-calculation still required (e.g. combining Type A and Type B components)
» Limited output reporting

* No integration with other metrology calculations (risk, ANOVA, curve-fit, etc.)

* No native handling of complex numbers

* Limited extensibility

« Security

‘4

/

Enter measurement model(s)

Enter values and uncertainties

/" Suncal Example — Magnitude and Phase (See GUM-Supplement 2)

., Sandia PSL Uncertainty Calculator - v1.5.2 O X
Project Uncertainty Window Help
v Measurement Model (+) (=)
MName Expression Units Description Report?
mag im< + re Magnitude
ph atans(im, re) Phase
v Measured Values and Uncertainties
. . Degrees - Standard .
Variable Parameter Value Units Fresdom Description Uncertainty Preview
im Measured 0 inf Imaginary Component +0.01 E
/’ Distribution normal ~ =/
. Uncertainty 0.01
u(im) inf £0.01
k 1.00
. I 1 I
Cenfidence 88.27% -004 -002 0.00 0.02 0.04
re Measured 0.001 inf Real Component +0.01 x
Distribution normal ~ =/
\ Uncertainty 0.0
\ u(re) inf +0.01
k 1.00
. 1 I I
Confidence 68.27% 004 -002 0.00 0.02 0.04
> Correlations
> Notes
» Settings
Calculate

- =] »

/" Suncal Example — Magnitude and Phase (See GUM-Supplement 2)
“

GUM Approximation Monte-Carla

Results include: ——

« GUM Evaluation e
« Derivation of equations .

« Sensitivity coefficients & proportions

 Monte-Carlo Evaluation .
« Convergence plot | S - I
* Distribution fits | - #er razy
* Symmetric & shortest coverage intervals s, S

- Expanded uncertainties — ERCE

« GUM and MC comparison |

 Joint probability plots, correlations .

aaaaaaa

Uneesaies

Uiy = 20 mie il Mt Mg + Ul (7-mag)? « vl (;-mag)?

Uz = 3 200menbimbnegis Bl R+ U, (2 ph)? + ud | Zoph)?
Serpifiad;

B T e —T
Umsy = Y =T

[I, & 8t & W — P + PR,

Ugn =

Effectve degrees of freedom:

ther tools: decision risk, curve fit uncertainty, ANOVA, interval analysis...

1 Lo P L, 2 sin skt St - a ®
T — — - =1 S .
"+ Sancin P5L Uncartainty Calrultor - w153 - [=]) | it i
/ Project Ak Window Help : : - . | : =
| 1 3 s
| Pwwrste | fotes | || P e [R—r i . Vedisie NI B WL P D e
ol H | PP » s - . Lisld LS GBI 40
| mode ke = + Coerect Decision & , . . . i ummn osma 4k
] - - : = . ET T T T
| cooutason: [Mame Carta v 3b - Fles Accept ' g idedl | e | homed | 4d
+ False Reject i T I BT |
= H [T =] FIET]
Tont Uncertanty Rate: (4.0 H 2k i Rr—ar—mrr
Invtoderance probablity: [90.00 i Sl BT GRHI 44
. . H 30 umam osmam 41
H

Theld RN 0B 40

Guardband Facks: 'ubu

Tewt Messrarsant:

Test Result

-
=
s
L
| smrrmresrsmremes!
g
.
e
—_—y

5 B -
A O j | | , I -
-3 -2 1 o 1 2 3 — . = EE— = .00588
muaI ml.ll'.t o cha PSL Uncartamty Caleulator - 1.5 — T
Froject CunmFit Window Help e -
| |
AEDI$Q = S | e . | p—_—— | . . .
| a . 5 o
| B hom ot Band — R |- | : P f
| [sherw Pracicsan tard _ == Confidence Band (95%] Rt -
350" __ prediction Band [95%) - #E S PO E
Exparciec: Shuoentt v L
(o] won | [2mm s 00 L
a4
-3
2 150 -
| "
| &
16 -
50 -
a 1 z £ a 5
Length
#EI FQEW
Pammeter Womind | Standan inostanty -
b E 26
' EE] 0.8

y=3501x+50.91

Godness of Ft
r requared Stasdard Eror (Sya) Foalue
sy LEC I L 12 0

/" Software Quality
/i

/4 Everybody can instantly recognize bad software, but how do you recognize quality software?

Some aspects of software quality assurance (SQA):

« Defined and traceable software requirements, software design document
» Version control (both code and requirements)

- Formal change request procedures

* Documented code reviews

* Verification and Validation (unit test, system test, integration test, etc.)

* Usability testing

* User documentation, training requirements

» Build and deployment procedures

Software is never finished, only abandoned.

P/ Graded Approach
z

/" Overall risk level of software relates to level
of rigor required in ensuring its quality.
* Risk level RL = consequences x likelihood

. . g . Graded Risk Level (RL)
and/or SUggeSted at each level Likelihood Tier Consequence Tier
Undesirable event due Undesirable Event
to software failure C4 C2 C1 Co
(Catastrophic) (Moderate) (Low) (Negligible)
. . . . L4 RL =H RL=M RL=L
(Very High) PL=P3 PL=P2 PL=P1
Policy provides details on how to determine 5 me L= PL-F2 Lo
C and L levels. Examples: (High) PL=P3 PL=P2 PL-P2 PL - Pl
L2 RL=H RL =M RL=M RL=L RL=L
. . ; ! (Moderate) PL=P3 PL=P2 PL=P2 PL=P1 PL=P1
« SW failure that can result in loss of life or serious L1 RL =M RL =M RL=1
- . (Low) PL=P2 PL=P2 PL=P1
injury is C4 1o RL=L RL=L RL=L
_ _ o (Negligible) PL=P1 PL =Pl PL=P1
« Severe damage to environment contained within Legend: B _ |
. . RL values: N = negligible, L = low, M = moderate, H = hugh, VH = very lugh
boundaries is C3 PL values: PO, P1. P2. P3. and P4 are defined in the Guidance to SSQAP Practice Levels. Practice activities related to
these practice levels are provided in Table 3-3.
* Moderate damage to reputation or customer Sandia Software Quality Assurance Policy

relationships is C2

/" Suncal Software Evolution
/4

« Suncal evolved from a few lines of “data analysis” code to a full software suite.

rd

‘4

* Requirements/functionality evolved with the software
« SQA rigor increased as the software grew in scope/complexity

Considerations for other software:

- Software written from the ground up for a specific purpose should consider SQA from the
beginning through all stages of development.

- Software written by large teams may have additional procedures

P Stage 1: “Help me calculate this uncertainty budget”

import numpy as np

A few lines of code in an interactive import matplotlib.pyplot as plt
Python/Jupyter notebook N = 1000000

real = np.random.normal{loc=.81, scale=.81, size=N)
imag = np.random.normal{loc=8, scale=.81, size=N)
magnitude = np.sgrt{real®2 + imag**2)

phase = np.arctan2(imag, real)

« Considered “data analysis”, not really

“ESC)ft\A/Eirfau counts, ybins, xbins = np.histogram2d{phase, magnitude, bins=45, density=True)
levels = np.linspace(counts.min{), counts.max(), 11)[1:]
plt.contour{counts, levels)
plt.xlabel('Magnitude")
plt.ylabel('Phase");

T T
0 5 10 15 20 25 30 35 40
Magnitude

P Stage 1: “Help me calculate this uncertainty budget”

SQA: Low risk, low rigor

No real or formal SQA activities, just a
simple sanity check:

* Do the results make sense?

- Did | get a negative uncertainty? Or
100000% uncertainty?

xlow, xhi = np.quantile(magnitude, (©.825, 8.975))
plt.hist(magnitude, bins=188)

plt.axvline(xlow, color="black")

plt.axvline(xhi, color="black")

print(f'95% Coverage: ({xlow:.3g}, {xhi:.3g})")

45% Coverage: (9©.0829, 5.8323)
x10*
ﬂ =

25
20 -

15F

10+

05 -

0.0 - '
0.00 0.0l 0.02 0.03 0.04 0.05

0.06

P Stage 2: “Now do some other calculations too”

Calculations were generalized into a few
functions

- Still “data analysis”, but with more structure,
reusable

* Code shared among a few programmers via
email

def montecarlo_uncert(func, means, uncerts, N=1882008):
samples = [np.random.normal{m, u, N) for m, u in zip({means, uncerts)]
results = func(*samples)
return results

def f(x, y):
return np.sqri(x**2 + y**2)

samples = montecarlo_uncert(f, means=(18, .1}, uncerts=(2, .1))
plt.hist(samples, bins=10@);

35000

30000 4

25000

20000

15000 1

10000 4

5000 4

I] d
25 50 75 oo 125 150 175 200

P Stage 2: “Now do some other calculations too”

0.012
SQA: Low risk, low rigor]
.E -
SQA Activities: %o.noa-
: : GUM Example g
« Simple sanity check gows
B 0004-
* Run a known example (e.g. from NIST- 2
1900) and compare the results 0002
- Revision control: make sure there’s a R T T e o ™
backup somewhere
0.013 = GUM Alppmximatinn Iuam,e Carlo
' s Monte Carlo Intervals
— 99%
:E‘CIOO@—
Suncal Result &
E 0.004

0.000 750 800 850 200 950

&y [nm]

/" Stage 3: “Hey | can solve these symbolically!”
/d

* Use Sympy library to solve GUM equations
symbolically

rd

« Evolved into object-oriented software to handle
generalized measurement models with any number
of inputs and uncertainty components

* Formed into a proper Python package (installable
and importable in Python environment)

* Proper APl and more flexible output formatting
* Being used within PSL among several metrologists

* Moving beyond data analysis into something more
akin to “software”

Uncertainties:

Umag = \/u (5m=mag)? + uZ(s:mag)?

Uph = \/Uz .,m_mph 2+U2 {areph}

Simplified:

u _ im?uf, + reful,
mag im?# + re?
im?ul, + refu,

L = —_—
ph im? + re?y?

P Stage 3: "Hey | can solve these symbolically!”

SQA Rigor increases and becomes a documented thing.
Higher complexity, potentially more users, but still all
internal programmers.

SQA Activities:
* Worote very high-level software requirements

« Black-box level testing. Use multiple examples from
NIST-1900, GUM, etc.

* Formal test cases developed and documented,
automated with py.test

* Every requirement traceable to an automated test case
* True revision control in git

* Every user is testing the code, even if they don't realize
it!

P Aside: Writing Software Requirements

See ISO/IEC/IEEE 29148:2011 for suggestions on writing quality software requirements:
* Necessary

* Implementation-Free

* Unambiguous

« Consistent

« Complete

* Singular

* Feasible

* Traceable
* Verifiable

Poor requirement: “It should calculate uncertainties”

Better requirement: “The software shall compute combined standard uncertainty of a measurement
model by applying GUM equation 13 to arbitrary measurement functions...”

rd

/

Requirements Traceabillity

Upstream
Requirement

SW

Requirement

Test Case

Traceability doesn'’t always refer to measurement values and the Sl...

A 4
|1 REQUIREMENT
2

3
4 Measurement System - Input
5 The software shall:

1. allow entry of one or more measurement model equations [as equation (1) in GUM). Each equation @25

imay be independent or depend on other equations in the system. Equations may be entered as:

b. A python callable

]

7 | a. Astring expression
a 4

9 ¢. A sympy object

10 2. allow entry of a nominal value for each input variable defined in the measurement equations.
3. allow entry of one or more uncertainty components for each input variable defined in the

11 measurement equations.,

a. Each uncertainty compoenent shall reduce to a standard uncertainty and degrees of freedom for Y

12 each input variable for use in the GUM calculation
b. Each uncertainty component shall consist of a statistical distribution function and parameters

that define that function, for use in the Monte-Carlo calculation. A normal distribution is used by (@15

13 default.

Suncal uses a cheap spreadsheet to record traceability.
Fancier database applications are available for this too.

B_C[DE F[G(H| I J[K|[LMHN
TEST CASE
test_examples.py
o
c & '_li
=] = - -
§=mm'3mﬁg.‘=sﬁ'
1§GEEGG§“§§3m
002222208080 E2%
L R R R R
CEEEEEEREEREERE
X X X X X X X X X X X X
@14 X XX X X X X
o7 X X
@1
.1?KXJIKHXIXXIKK
20
O X XX KX KX XX
X X
X X X X X X X X X X X

P “Black Box” Test Cases

Individual functions that test one aspect of the code.
Usually run a calculation, then compare the result with known reference value.

Suncal Value GUM Value

- test_GUMH1():
Example from GUM H1. Good test of defrees of frdedom, and reading degf |from file.
= uc.UncertaintyCalc.from_configfile('fest, fi i

“assert” statements throw an error

.seed = @
. .) . .calculate(MC=False)
durlng test |f the SOftware S rESUIt IS : rt numpy.isclose(u.out.gum.uncert().magnitude, 32, atol=.4)
not Close* to the pUbIlShed reSUIt 3 t numpy.isclose(u.out.gum.degf(), 16, atol=1)

numpy . 1:.-:105.==(u c===t 1nputvar(d } :.tdunc i ; .85)
rt numpy.isclose(u.get inputvar('d').degf(), 25.6, atol=.85)

* Within the significant figures reported by the published value
** Be careful when testing Monte Carlo calculations — set the random number seed or results may fail!

P Stage 4: “More people would use this if it had a GUI”

Add full-featured user interface (pyQt) that
sits on top of Python library

« Refactored some of library to better integrate [patun Sl

with GUI - = T
© Added Save/load Capability vM::suradUah:a:;::llil:::mainhas
- Added more integrated output plotting rather o o e

Chatribastian |feairld =

than relying on user to generate plots oy (2=
themselves e e

Meazuie o e il Real Composen = [ual

orgs, trainings

- Now being used outside PSL at other Sandia o - /\

rd

/

v

/" Aside: Some thoughts on GUIs...

Before you jump in to writing a GUI, ask:

* Do you REALLY need a GUI? Or would a command-line interface be just as good?

* Do you know what OOP means?

* Do you care what language it's programmed in? If not, pick one that makes GUIs easy.

Suncal lines of code:

- 9276 Backend

* 9435 Graphical user interface
* 314 Command-line interface

Always start with backend — keep it separate! — then add the GUI on top

Stage 4: "More people would use this if it had a GUI”

SQA Rigor: GUI adds complexity, more rigor
needed

SQA Activities:

* Add some function-level tests (more than black-
box testing)

* GUI needs usability testing. Recruit the interns!
* Add a user manual

‘ Docur_nentatlon and Conﬁguration management Dependencies locked to specific versions for
for build process build/release process

* Formal issue/change request tracking
* Independent check of SQA activities.

P Stage 5: “Let’s share it with the world!”

Additional calculation features are being added

* Public release means satisfying legal S
requirements: license file, 3rd party B
Fit Line Residual Histogram
acknowledgements

* Host publicly on Github, add website h///’ﬂw

Residuals

Probability
e ~
o (%)

100 200 300 400 - 0 1
X] ay
. =
° MUCh expanded user base Raw Resmuals'] Normal Probability
a 1-
> T ’ E" """"""
- - R
=0 L) . w b S L
-1 i |. (. = o- X
100 200 300 400 E -1 Q 1 2
X © Theoretical quantiles
o
REIPQEX
Measured ¥ Measuredy Predicted v Residual Confidence Band Prediction Band
(95%) (95%)

100.0 9.6 9.5 0.093 2.3 3.2
130.0 277 28.0 -0.30 1.4 2.7
160.0 35.9 3r4 -0.45 1.2 2.6
190.0 43.9 43.7 0.16 1.00 25
220.0 40.04 48.50 144 0.84 24
Back 250.0 51.96 52.35 £0.39 0.76 24

P Stage 5: “Let’s share it with the world!”

SQA Rigor: Larger audience, higher risk

SQA Activities:

Regression testing becoming more important

Added informal code-coverage analysis during
testing, leading to additional unit-tests

Code linting/analysis tools

Still no formal or automated GUI testing, but
more users exercising it

Idef diagonal(a):
64 """ Return diagonal of square matrix "'
if len{a) » @ and a[®]:
return [a[i][i] for i in range(len(a))]
else:
éSI return []

Code-coverage report showing a missed edge case

P Current state of Suncal SQA

Suncal is certainly not perfect or bug-free, but we believe SQA activities (still relatively low rigor) are
appropriate to ensure calculation results are reliable.

SQA Activities being done:

* Revision control (code, requirements, change requests)

* Informal user testing (via training, etc.)

* Automated functional (black-box) test, with traceability to SW requirements

* Automated unit testing

* Independent review of SQA activities

* Build/configuration management

« Simple code-coverage analysis of automated test to identify additional unit tests

* Code linting/analysis tools

P Higher-rigor SQA activities may include:

Automated GUI test
* Formal usability testing, human-factors assessment
* Python type hinting to help identify/prevent defects
* Formal and documented code reviews
« Code coverage requirements (statement, branch, or condition-level) with justification for non-covered code
* Rigorous change procedure for code and requirements
* Additional independence in SQA activities

* Independent auditing/testing of 3rd party dependencies

Suncal References

Overview of Suncal and its features:

* A comprehensive open-source software for statistical metrology calculations: from
uncertainty evaluation to risk analysis. C. Delker. NCSLI Measure 13-3, 2021
(accepted)

 https://sandiapsl.github.io

Hands-on Training:

* Introduction to the Suncal Software for Statistical Metrology Calculations. NCSLI
Symposium Tutorial Program, 2021.

Theory and statistics behind the calculations:

* Introduction to Statistics in Metrology. S. Crowder, C. Delker, E. Forrest, N. Martin.
Springer, 2020.

Stephen Crownder
Coalki ker

r Forrest
Mewin Martin

Introduction
to Statistics

in Metrology

https://sandiapsl.github.io

Questions?

1= GRADE ACTIVITIES:

GRAD SCHOOL

T I

USEFULNESS
TO CAREER

SUCCESS

1 — i
Qoo HOURS YOO HOURS ONE. WEEKEND
OF CLASSES OF HOMEWORK MESSING WITH

PR by 10N

https://xkcd.com/519

