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Suncal is somewhere in here

https://xkcd.com/844/

Why this talk?

• Software validation is required by ISO/IEC 
17025:2017, with little guidance on how to implement

• Most metrologists are not software engineers, yet 
custom in-house metrology software is common



Outline
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• Overview of Suncal Software
• What is software quality?
• Graded approach to SQA
• Stages of Suncal software evolution and SQA



Sandia Uncertainty Calculator (Suncal)

Calculations:
• GUM (symbolic) and Monte Carlo Uncertainty propagation
• Uncertainty in linear and non-linear curve fitting
• Measurement Decision Risk
• Calibration Interval Analysis
• Analysis of Variance, autocorrelation
Usage:
• Windows/Mac/Linux user interface
• Command-line interface
• Python library

Free, open-source, GPL License 
• https://sandiapsl.github.io 

4

https://sandiapsl.github.io


Motivation for developing Suncal
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But what about _______ commercial software that does uncertainty calculations?

While other uncertainty software exists, we found it to be too limiting:
• No symbolic solutions to GUM equation
• Limited handling of units/dimensional analysis
• Limited complexity of model, limited number of input variables
• Too much hand-calculation still required (e.g. combining Type A and Type B components)
• Limited output reporting
• No integration with other metrology calculations (risk, ANOVA, curve-fit, etc.)
• No native handling of complex numbers
• Limited extensibility
• Security



Suncal Example – Magnitude and Phase (See GUM-Supplement 2)
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Enter measurement model(s)

Enter values and uncertainties



Suncal Example – Magnitude and Phase (See GUM-Supplement 2)
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Results include:
• GUM Evaluation

• Derivation of equations
• Sensitivity coefficients & proportions

• Monte-Carlo Evaluation
• Convergence plot
• Distribution fits
• Symmetric & shortest coverage intervals

• Expanded uncertainties
• GUM and MC comparison
• Joint probability plots, correlations



Other tools: decision risk, curve fit uncertainty, ANOVA, interval analysis…
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Software Quality
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Everybody can instantly recognize bad software, but how do you recognize quality software?

Some aspects of software quality assurance (SQA):
• Defined and traceable software requirements, software design document
• Version control (both code and requirements)
• Formal change request procedures
• Documented code reviews
• Verification and Validation (unit test, system test, integration test, etc.)
• Usability testing
• User documentation, training requirements
• Build and deployment procedures

Software is never finished, only abandoned.



Graded Approach
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Overall risk level of software relates to level 
of rigor required in ensuring its quality.

• Risk level RL = consequences x likelihood
• Practice Level PL describes SQA activities required 

and/or suggested at each level

Policy provides details on how to determine 
C and L levels. Examples:
• SW failure that can result in loss of life or serious 

injury is C4

• Severe damage to environment contained within 
boundaries is C3

• Moderate damage to reputation or customer 
relationships is C2

Sandia Software Quality Assurance Policy



Suncal Software Evolution
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• Suncal evolved from a few lines of “data analysis” code to a full software suite.
• Requirements/functionality evolved with the software
• SQA rigor increased as the software grew in scope/complexity

Considerations for other software:
• Software written from the ground up for a specific purpose should consider SQA from the 

beginning through all stages of development.
• Software written by large teams may have additional procedures



Stage 1: “Help me calculate this uncertainty budget”
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• A few lines of code in an interactive 
Python/Jupyter notebook

• Considered “data analysis”, not really 
“software”



Stage 1: “Help me calculate this uncertainty budget”
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SQA: Low risk, low rigor
No real or formal SQA activities, just a 
simple sanity check:
• Do the results make sense?
• Did I get a negative uncertainty? Or 

100000% uncertainty?



Stage 2: “Now do some other calculations too”
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• Calculations were generalized into a few 
functions

• Still “data analysis”, but with more structure, 
reusable

• Code shared among a few programmers via 
email



Stage 2: “Now do some other calculations too”
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SQA: Low risk, low rigor
SQA Activities:
• Simple sanity check
• Run a known example (e.g. from NIST-

1900) and compare the results
• Revision control: make sure there’s a 

backup somewhere

Suncal Result

GUM Example



Stage 3: “Hey I can solve these symbolically!”
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• Use Sympy library to solve GUM equations 
symbolically

• Evolved into object-oriented software to handle 
generalized measurement models with any number 
of inputs and uncertainty components

• Formed into a proper Python package (installable 
and importable in Python environment)

• Proper API and more flexible output formatting
• Being used within PSL among several metrologists
• Moving beyond data analysis into something more 

akin to “software”



Stage 3: “Hey I can solve these symbolically!”
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SQA Rigor increases and becomes a documented thing. 
Higher complexity, potentially more users, but still all 
internal programmers.

SQA Activities:
• Wrote very high-level software requirements
• Black-box level testing. Use multiple examples from 

NIST-1900, GUM, etc.
• Formal test cases developed and documented, 

automated with py.test
• Every requirement traceable to an automated test case
• True revision control in git
• Every user is testing the code, even if they don’t realize 

it!



Aside: Writing Software Requirements
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See ISO/IEC/IEEE 29148:2011 for suggestions on writing quality software requirements:
• Necessary
• Implementation-Free
• Unambiguous
• Consistent
• Complete
• Singular
• Feasible 
• Traceable
• Verifiable

Poor requirement: “It should calculate uncertainties”
Better requirement: “The software shall compute combined standard uncertainty of a measurement 
model by applying GUM equation 13 to arbitrary measurement functions…”



Requirements Traceability
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Traceability doesn’t always refer to measurement values and the SI…

Test Case

SW 
Requirement

Upstream 
Requirement

Suncal uses a cheap spreadsheet to record traceability.
Fancier database applications are available for this too.



“Black Box” Test Cases

20

Individual functions that test one aspect of the code.
Usually run a calculation, then compare the result with known reference value.

“assert” statements throw an error 
during test if the software’s result is 
not close* to the published result

* Within the significant figures reported by the published value
** Be careful when testing Monte Carlo calculations – set the random number seed or results may fail!

GUM ValueSuncal Value



Stage 4: “More people would use this if it had a GUI”
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• Add full-featured user interface (pyQt) that 
sits on top of Python library

• Refactored some of library to better integrate 
with GUI

• Added save/load capability
• Added more integrated output plotting rather 

than relying on user to generate plots 
themselves

• Now being used outside PSL at other Sandia 
orgs, trainings



Aside: Some thoughts on GUIs…
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Before you jump in to writing a GUI, ask:
• Do you REALLY need a GUI? Or would a command-line interface be just as good?
• Do you know what OOP means?
• Do you care what language it’s programmed in? If not, pick one that makes GUIs easy.

Suncal lines of code:
• 9276 Backend
• 9435 Graphical user interface
• 314 Command-line interface

Always start with backend – keep it separate! – then add the GUI on top



Stage 4: “More people would use this if it had a GUI”
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SQA Rigor: GUI adds complexity, more rigor 
needed

SQA Activities:
• Add some function-level tests (more than black-

box testing)
• GUI needs usability testing. Recruit the interns!
• Add a user manual
• Documentation and configuration management 

for build process
• Formal issue/change request tracking
• Independent check of SQA activities.

Dependencies locked to specific versions for 
build/release process



Stage 5: “Let’s share it with the world!”
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• Additional calculation features are being added
• Public release means satisfying legal 

requirements: license file, 3rd party 
acknowledgements

• Host publicly on Github, add website
• Much expanded user base



Stage 5: “Let’s share it with the world!”
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SQA Rigor: Larger audience, higher risk

SQA Activities:
• Regression testing becoming more important
• Added informal code-coverage analysis during 

testing, leading to additional unit-tests
• Code linting/analysis tools
• Still no formal or automated GUI testing, but 

more users exercising it Code-coverage report showing a missed edge case



Current state of Suncal SQA 
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Suncal is certainly not perfect or bug-free, but we believe SQA activities (still relatively low rigor) are 
appropriate to ensure calculation results are reliable.

SQA Activities being done:
• Revision control (code, requirements, change requests)

• Informal user testing (via training, etc.)
• Automated functional (black-box) test, with traceability to SW requirements

• Automated unit testing
• Independent review of SQA activities

• Build/configuration management
• Simple code-coverage analysis of automated test to identify additional unit tests
• Code linting/analysis tools



Higher-rigor SQA activities may include:

27

• Automated GUI test
• Formal usability testing, human-factors assessment

• Python type hinting to help identify/prevent defects
• Formal and documented code reviews

• Code coverage requirements (statement, branch, or condition-level) with justification for non-covered code
• Rigorous change procedure for code and requirements

• Additional independence in SQA activities
• Independent auditing/testing of 3rd party dependencies



Suncal References
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Overview of Suncal and its features:
• A comprehensive open-source software for statistical metrology calculations: from 

uncertainty evaluation to risk analysis. C. Delker. NCSLI Measure 13-3, 2021 
(accepted)

• https://sandiapsl.github.io 

Hands-on Training:
• Introduction to the Suncal Software for Statistical Metrology Calculations. NCSLI 

Symposium Tutorial Program, 2021.

Theory and statistics behind the calculations:
• Introduction to Statistics in Metrology. S. Crowder, C. Delker, E. Forrest, N. Martin. 

Springer, 2020.

https://sandiapsl.github.io


Questions?
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PYTHON

GRAD SCHOOL

https://xkcd.com/519


