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Abstract—The study presented here focuses on performance
characteristics and trade-offs associated with running machine-
learning tasks in multi-GPU environments on both on-site cloud
computing resources and commercial cloud services (Azure).
Specifically, this study examines these trade-offs by examining
the performance of training and fine-tuning of transformer-
based deep-learning (DL) networks on clinical notes and data,
a task of critical importance in the medical domain. To this
end, we perform DL-related experiments on the widely deployed
NVIDIA V100 GPUs and on the newer A100 GPUs connected via
NVLink or PClIe. This study analyzes the execution time of major
operations to train DL models and investigate popular options to
optimize each of them. We examine and present the findings on
the impacts that various operations (e.g. data loading into GPUs,
training, fine-tuning), optimizations, and system configurations
(single vs. multi-GPU, NVLink vs. PCle) have on the overall
training performance.

I. INTRODUCTION

The research efforts presented here represent a collaboration
between Oak Ridge National Laboratory and the US De-
partment of Veterans Affairs (VA) to study and understand
the performance characteristics and trade-offs associated with
running machine-learning tasks using on-site cloud comput-
ing resources vs. commercial cloud services. Specifically,
we are interested in training and fine-tuning a transformer-
based deep-learning (DL) network on clinical notes, a task of
critical importance. The VA curates one of the largest global
repositories of clinical notes, including mental health records.
To process these notes efficiently and accurately, our team
investigated which configuration offers the best performance
for DL problems and natural language processing (NLP) tasks.

Given the size and complexity of the data, and to best inform
the VA’s decisions, we used the VA’s BlueRidge on-site high-
performance computing (HPC) platform, and we compared the
performance with a similar cloud-based solution. Specifically,
we performed DL-related experiments on the widely deployed
NVIDIA V100 GPUs and on the newer A100 GPUs in single
and multi-GPU configurations connected via NVLink or PCle.
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Fig. 1: Overview of fine-tuning a DL-based language model.

We then performed the same experiment on an equivalent con-
figuration in the cloud. We also studied any potential impacts
that the different I/O profiles of each platform might have
on the DL training performance. We present the experimental
configuration and results in the following sections.

II. BACKGROUND

Language modeling is the task of learning the structure of
natural language by using statistical and probabilistic tech-
niques. This is accomplished by determining the probability
of a given sequence of words occurring in a sentence. For
this task, DL-based models, such as the Bidirectional Encoder
Representations from Transformers (BERT) [1], demonstrated
impressive results compared with prior methods. However,
DL-based language models require enormous computing re-
sources to train—from scratch—the large amount of text data
required for a well-generalized model.

To overcome this challenge, language models are now being
fine-tuned. This process involves models that are pretrained
using generic text corpora, such as Wikipedia articles and
the BookCorpus dataset, and then fine-tuning the model for
a target text corpus. Figure 1 shows an overview of fine-
tuning a DL-based language model. The fine-tuned language
model specific to the target text is often used for downstream
machine-learning tasks (e.g., classification of documents and
other natural language—specific machine-learning tasks). Fine-
tuning reduces the time required to train a language model
and requires fewer computational resources. Fine-tuning also



increases the prediction accuracy in the downstream machine-
learning task.

Because this study specifically fine-tunes the BERT model
for medical notes, we briefly introduce the BERT model and
fine-tuning of language models, along with related work in
fine-tuning with a focus on computational efficiency.

A. Transformer neural networks

The transformer architecture introduced by Vaswani et
al. [2] is a sequence-to-sequence [3] model consisting of an
encoder and a decoder. The encoder takes an input sequence
and maps it into a higher-dimensional space. This abstract
high-dimensional vector is then fed into the decoder, which
then turns it into an output sequence.

Unlike other sequence-to-sequence models based on re-
current neural networks, the transformer architecture does
not contain any recurrent connections. Transformer neural
networks capture long-range dependencies using only the
attention mechanism [4]. Attention enhances the important
parts of the input data and fades out the rest. The transformer
architecture also uses multi-headed attention and self-attention.
Multi-headed attention helps capture dependencies of various
ranges within a sequence. Self-attention helps capture contex-
tual relationships between itself and other tokens.

B. Related work

A few efforts relevant to this study span two categories:
performance benchmark studies of DL models and, more
narrowly, fine-tuning large language models such as BERT.

1) Performance benchmark studies of DL models: Hetero-
geneous HPC systems with GPUs are equipped with high-
performance interconnects such as InfiniBand, Omni-Path,
PCle, and NVLink. Multiple studies have captured the per-
formance impact of these interconnects on distributed DL [5],
[6]. Prior studies have discussed the impact on the end-to-
end training time for different communication interconnects
and identified the major bottleneck as the allreduce calls
used for synchronization and gradient communication in up-
dating the model parameters [6]. However, most prior studies
of communication interconnects considered relatively well-
known convolutional neural network models with imagery
data [6]. More recently, a large language model (transformer)
included in the MLPerf benchmark suite was studied [5].
However, this study was limited to a single-GPU system
without the need for an interconnect, and the results do not
consider the effects of communication interconnects on the
training time. Because the behavior of DL workloads varies
according to the input data characteristics and the model sizes,
a large-scale language model requires a separate benchmark
study. More specifically, because distributed DL workloads are
communication bound in the model updates, we focus on the
impact of communication interconnects on the training time
for large language models such as BERT.

2) Performance benchmark studies of language model fine-
tuning: Yihui Ren et al. [7] examined the performance of

TABLE I: Hardware configurations: BlueRidge is a virtual
machine (VM) running on VMware

System name GPU model NVLink
IDK 4x NVIDIA Tesla V100 SXM 16 GB Yes
BlueRidge (VM) 3x NVIDIA GRID V100S 32 GB No
Azure (NC24s_s) 4x NVIDIA Tesla V100-PCIE 16 GB No
System name Storage system (file system/device)

IDK NFS/Flash

BlueRidge NFS/Flash

Azure (NC24s_s) XFS/Premier SSD

System name CPU

IDK Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz 64 cores
BlueRidge (VM) Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz 8 vCPUs
Azure (NC24s_s) Intel(R) Xeon(R) E5-2690v4 CPU @ 2.60 GHz 24 cores
System name Memory

IDK 376 GB

BlueRidge (VM) 32GB

Azure (NC24s_s) 440 GB

leading-edge systems designed for machine-learning comput-
ing, including the NVIDIA DGX-2, Amazon Web Services
(AWS) P3, IBM Power System Accelerated Compute Server
AC922, and a consumer-grade Exxact TensorEX TS4 GPU
server. Representative DL workloads used in computer vision
and NLP were the focus of the analysis. Performance opti-
mization studies related to the NVIDIA Collective Communi-
cation Library (NCCL)/NVLink [8], [9] are of interest because
they are critical in training DL models in distributed, multi-
GPU environments. Our study also shows that the time spent
optimizing models in multi-GPU environments varies signif-
icantly depending on the use of NVLink in communication
between GPUs.

III. SYSTEM CONFIGURATION

Table I summarizes the hardware configurations of the test
bed platforms used in our experiments. Among those test
beds, the BlueRidge on-site cloud environment is described
here in additional detail. BlueRidge includes a mix of high
core count, high memory, and GPU-equipped environments.
Flexible virtual allocations ensure that the underlying hardware
is utilized at high efficiency while meeting the needs of users
who need GPU or CPU-only resources.

GPUs are well suited for highly parallelizable ML/AI op-
erations, and this project explores ways to maximize fixed-
resource GPU use in on-site environments by providing a
mix of dedicated GPUs for large training jobs and on-
demand, virtualized GPUs for smaller training and inference
jobs. BlueRidge can also dynamically schedule smaller re-
source pools of higher value, such as dedicated NVLink- or
NVSwitch-connected GPUs for large training operations that
require the higher bandwidth and larger aggregate GPU mem-
ory. However, we have not deployed NVLink-based GPUs
in our BlueRidge environment. Instead, we deployed PCle-
based GPUs. The GPU configurations and allocation models
are illustrated in Figure 2.

IV. APPROACH

To benchmark the specific workload studied here, we
download a pretrained BERT model [1], known as bert-
base-uncased, provided by the Hugging Face transformers
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Fig. 2: GPU configuration and allocation model on BlueRidge.

library [10]. We then fine-tune this language model using the
clinical notes provided in the Medical Information Mart for
Intensive Care version 3 (MIMIC-III) dataset [11]. We use
90% of the notes as our training data and the remaining 10%
as our testing data. We train the model for 3 epochs following
standard practice for fine-tuning language models [12].

MIMIC-III is a large, single-center database comprising
information relating to patients admitted to critical care units
at Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts. It contains data associated with 58,976 distinct
hospital encounters for 46,520 patients admitted to critical
care units between 2001 and 2012. The dataset is stored in
a relational database consisting of 26 tables with information
regarding admissions, discharges, patients, procedures, pre-
scriptions, and diagnoses, which are organized by Johnson
et al. [11]. We are interested in the clinical notes that are
part of this dataset. These notes are grouped into categories
written by nurses, physicians, and other healthcare personnel
and stored in the table called NOTEEVENTS. For training the
language model, we use all of the nodes except those marked
as erroneous.

A. Performance under evaluation

Figure 3 depicts the training process for a DL model, such
as transformers, to train a batch. One epoch consists of a
repetition of batches as the entire training dataset is iterated.
We repeat the epoch multiple times until the DL model is
optimized at the desired level. In a batch, our profiling results
identified four major operations as organized Eliad et al. [13]:
get training batch, forward (iteration), backward
(iteration), and optimizer (or model update). These four
operations consumed the majority of computation time and
resources when training our case, which is consistent with
other DL model training. We focus on these four operations
in our performance evaluation.

B. Experimental setup

We employ the PyTorch profiler from PyTorch Lightning,
which can leverage distributed data parallelism to measure
GPU and CPU usage and record more detailed GPU usage

Get train
batch \

/

/
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update

Fig. 3: Overview of the cyclical training process for a DL
model, including batch loading, forward and backward itera-
tions to identify correct network weights, and model updates.

TABLE II: Training model description (BERT for masked
language model)

Parameter types Size
Trainable parameters 109 MB
Non-trainable parameters 0
Total parameters 109 MB
Estimated modal parameter size 438.058 MB
Train batch size 4
Number of batches 190,121
Max sequence length 512

information for each operation during the model training. For
training the language model, we use the transformer package
from Hugging Face, which provides an interface to download
pretrained models from the online repository and perform
the required preprocessing operations, such as tokenizing the
target text data. Table II summarizes important parameters of
the pretrained model, and Table III summarizes the software
configurations. For an environment behind a firewall or an
offline system, such as BlueRidge in this study, we must ingest
the data online prior to the execution.

C. Experiments

For all experiments, we used automatic mixed preci-
sion (opt_level="01") [14], which is recommended by
NVIDIA for typical use to leverage the V100’s Tensor Cores.
Using level Ol automatic mixed precision casts inputs to
all PyTorch functions and tensor methods according to a
whitelist-blacklist model. Whitelist operations, such as general
matrix multiply (GEMM) and convolutions, are performed
in half-precision floating point (FP16). Blacklist operations
that benefit from full-precision floating point (FP32), such as
softmax, are performed in FP32. Level O1 also uses dynamic

TABLE III: System software configuration

Package name Version
PyTorch Lightning 1.3.8
PyTorch 1.8.1
Hugging Face transformers 442
cuDNN 8.0.5
11.2 (IDK)

CUDA 11.4 (Azure)
10.2 (BlueRidge)
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Fig. 4: Systems with NVLink (IDK) show better scalability
as the number of GPUs increases compared with PCle-based
systems (BlueRidge and Azure). In PCle-based systems, the
time spent on optimizer (or model update) often increases
as the number of GPUs increases.

loss scaling unless overridden. For communication between
GPUs, we used the distributed data parallel mode provided by
PyTorch Lightning (natively supported by PyTorch).

V. RESULTS
A. Breakdown of the total execution time per operation

Figure 4 shows the breakdown of each major computation
for each category during the execution of the considered appli-
cation. Across systems, the total execution time (i.e., the height
of the stacked bars) reduces as the number of GPUs increases,
except in the BlueRidge-2 GPU case. Yet, for the BlueRidge-
2 GPU case, the time spent on three major operations, get
train batch, forward, and backward, does reduce as
the number of GPUs increases. However, the time spent on
the optimizer operation (blue region in each stacked bar)
varies significantly depending on the system. To ascertain the
root cause of this behavior, we look closer.

Because the optimizer operation involves the exchange of
model parameters across GPUs, it is a communication-bound
and CPU-bound operation. Thus, it is an operation that may
not have a direct benefit from using multiple GPUs. Instead,
it more or less can be seen as a challenge to maintain the
benefits of using multiple GPUs in training DL workloads.

In this analysis, we see that a system with NVLink is more
scalable than the others. We attribute this to the wider band-
width that NVLink provides (40 GB/s) over PCle (10 GB/s).
As a result, the system with NVLink spent significantly less
time on the optimizer operation than others, leading to
the fastest and most scalable computation among the systems
benchmarked here. Other PCle-connected systems spent more
time on optimizer as the number of GPUs increased, which
meant more time spent on optimizer compared with other
operations for each case.

The single-GPU case in BlueRidge ran faster than the
single-GPU case in IDK, showing the importance of commu-
nication hardware (NVLink) and memory on the CPU side.
BlueRidge was configured with 32 GB of RAM for the VM,

which is the primary difference between the BlueRidge and
Azure VMs. We speculate that memory size explains why
performance degrades more seriously when two GPUs were
used compared with one GPU in BlueRidge. The importance
of communication hardware and system memory is a key
lesson learned from benchmarking scalable Al applications.

Another interesting result among single-GPU cases is that
BlueRidge performed better than other cases, though it ran in
a VM on a VMware hypervisor. Compared with BlueRidge,
the single-GPU Azure case spent 2.67x more time on the
get train batch operation, which offset the benefit of
the 2.46x faster optimization from having 13.7x more system
memory. As a result, the Azure singe-GPU case trained the
same workload 15.6% slower than the BlueRidge single-GPU
case. Because the get train batch operation is mostly
loading training data from the storage system, this case shows
differences between commercial cloud (Azure) and private
cloud (BlueRidge) I/O patterns for DL workloads. We used
the Premier SSD option in Azure, which is a high-end storage
service that Azure provides.

Next, we consider options to reduce the time spent on two
non compute—intensive operations: get train batch and
optimizer.

B. Breakdown of the total execution time with an optimized
get train batch operation

To optimize get train batch, we varied the number
of data loaders/workers. The results are shown in Figure 5.
By default, the number of data loaders/workers is 1, and they
run within the same process as the model training. When we
increase the number of loaders, PyTorch creates the matching
number of threads to load the training data. The optimal
number of loaders may depend on the size of the batch. In
our case, the batch size is 4, which is the largest batch size
that does not generate out-of-memory errors in the GPUs. We
vary the number of data loaders between 1, 2, and 4. When
we use 4 loaders, the efficiency plateaus, but with 2 loaders,
the time spent on get train batch is less than 5% of the
time spent with the default setting. Interestingly, the system
with NVLink (IDK) shows a marginal but negative impact on
compute-intensive operations, such as forward and backward
operations, as the number of data loaders increases. Otherwise,
the increased number of data loaders does not noticeably
slow down compute-intensive operations. In short, we highly
recommend increasing the number of data loaders if system
memory capacity allows for it.

C. Breakdown of the total execution time with different NCCL
parameters

NCCL offers parameters to control the communication
behavior at the expense of more CPU utilization and more
system memory usage:

e NCCL_NSOCKS_PERTHREAD specifies the number of
sockets opened by each socket transport helper thread.
For environments in which per-socket speed is limited,
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Fig. 5: The time required to load training data can be reduced by almost 5% by using multiple data loaders.

setting this variable larger than 1 may improve network

performance.

The default value is 8 on AWS and 1 in other
cases. For generic 100 Gbps networks, this
value can be manually set to 4. However, the
product of NCCL_SOCKET_NTHREADS and

NCCL_NSOCKS_PERTHREAD cannot exceed 64.

e NCCL_SOCKET_NTHREADS specifies the number of
CPU helper threads used per network connection for
socket transport. Increasing this value may increase the
socket transport performance at the cost of higher CPU
usage. This parameter can be set from 1 to 16.

The default value is 2 on AWS, 4 on Google Cloud
instances with the gVNIC network interface (since 2.5.6),
and 1 in other cases.

Because Azure GPU instances, IDK, and BlueRidge do not
set these parameters by default, we investigate the performance
implications on training the BERT language model according
to the above NCCL parameters. As shown in Figure 6, we con-
firm that those NCCL parameters do not exhibit performance
benefits in single-node, multi-GPU environments. Based on
this result, we speculate that NCCL parameters might be
critical in distributed environments, rather than in single-node,
multi-GPU environments.

VI. SUMMARY
Based on our findings from the benchmarking and analysis,
we offer several key insights:
o Loading training data and backward operations can be
dominant operations in single-GPU environments. How-
ever, their total execution times reduce as we increase

the number of GPUs. To further shorten the time to load
training data, we recommend using 2-4 data loaders if
the system memory capacity allows for it.

e When using multiple GPUs, optimizer performance
becomes a bigger factor in PCle-based systems. In PCle-
based multi-GPU systems, we recommend provisioning
sufficient system memory to prevent serious slowdown of
the optimizer operation. Because NCCL parameters
are not as useful in single-node, multi-GPU systems, there
are diminishing returns when using many GPUs in PCle-
based systems.

e NVLink outperforms PCle in single-node, multi-GPU
environments.

In summary, NVLink is a crucial component in scalable
multi-GPU environments, and research related to reducing the
communication overheads in the optimizer operation will
be important efforts toward scalable training of large language
models with large text datasets.

VII. CONCLUSIONS

In this study, we presented the implication of training
time affected by the hardware configuration of systems in
both commercial and on-site cloud environments, with a
focus on NVLink vs. PCle for GPU communication. We
also investigated the possible options for optimizing major
operations in training DL models and used fine-tuning of
the BERT language model as an example. According to our
experiments, systems that connect GPUs over PCle show less
effective scalability than systems with NVLink owing to the
inefficiency of the communication-intense model optimization
operation. In addition, the use of multiple data loaders was



Fig. 6: NCCL parameters do not have an impact on

BIUEHidgE—lGPU Azure-1GPU IDE-1GPU
400000 - g g
i B E RN
il E H I E R IIE N
100000 4
) (1,1} (2, 4} (2, 8) ) (1, 1) (2, 4) (2, 8) ) (1, 1) (2, 4) (2, 8)
threads,sockets threads,sockets threads,sockets
BIUEHidgE—EGPU Azure-3GPU IDE-3GPU
400000 4 1 1 mm  optimizer
mm backward
300000 1 ] ] mm forward
H 00000 4 | = B | BN get train batch
100000 i N _
o E E
(1,1} (2, 4} (2, 8) (1, 1) (2, 4) (2, 8) (1, 1) (2, 4) (2, 8)

threads,sockets

used in this case.

very effective in optimizing the time to load training data
across all tested systems. Tuning NCCL parameters, another
popular optimization technique, showed no clear benefits for
communication operations across the tested systems. We at-
tributed this behavior to the tested systems all being single-
node, multi-GPU systems. We hope that this study will be
informative to both system and algorithmic optimizations in
reducing scalability bottlenecks when training large language
models.
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