

Title: Aboveground and belowground contributions to ecosystem respiration in a temperate deciduous forest

Authors: Xiuping Liu¹, Wenxu Dong¹, Jeffrey D. Wood², Yuying Wang¹, Xiaoxin Li¹, Yuming Zhang¹, Chunsheng Hu¹, Lianhong Gu³

Affiliations:

¹ Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China

² School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA

³ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

Author for correspondence: Chunsheng Hu, Lianhong Gu

Email: cshu@sjziam.ac.cn, lianhong-gu@ornl.gov

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

Word counts: 4733 (Introduction: 724, Materials and Methods: 1456, Results: 661, Discussion: 1755, Conclusion: 131, and Acknowledgements: 46)

Number of tables: 3

Number of figures: 10

34 **Abstract**

35 In this study, we developed a three-way carbon dioxide (CO₂) flux-partitioning
36 algorithm that separates net ecosystem exchange (NEE) into aboveground plant
37 respiration (R_{above}), belowground root and soil respiration (R_{below}), and gross primary
38 production (GPP). We applied this algorithm to a coupled dataset of continuous
39 chamber-measured soil respiration and eddy covariance (EC)-measured NEE of CO₂ in
40 an oak-hickory (*Quercus-Carya*) deciduous broadleaf forest from 2006 to 2015. We
41 found that on annual time scale, R_{below} dominated over R_{above} with the former accounting
42 for 66.9-86.4% and the latter 13.6-33.1%, of the total ecosystem respiration (R_{eco}). The
43 ratio of R_{below} to R_{above} varied seasonally, ranging from 1.77 to 7.25 in growing season,
44 and 1.02 to 4.57 in non-growing season. The temperature sensitivity (E_0) of R_{below} was
45 significantly higher than that of R_{above}, and E_0 of R_{eco} responded differently to air and
46 soil temperature. Over the whole study period, annual mean R_{above}, R_{below}, and GPP
47 were 243, 806, and 1170 g C m⁻², respectively, with annual R_{eco} accounting for 89.6%
48 of GPP, of which 68.8% was lost as R_{below} and 20.8% lost as R_{above}, and leaving only
49 10% of the carbon fixation in ecosystems. These estimates, however, did not consider
50 potential light inhibition of leaf respiration. If we accept the presence of light inhibition,
51 then the daytime three-way partitioning method would underestimate annual R_{above} by
52 20.4% whereas the nighttime method would overestimate R_{above} by 23.9% and GPP by
53 4.7%, compared with estimates accounting for light inhibition in leaves.

54 **Key words:** net ecosystem exchange; soil respiration; flux partitioning; temperature
55 sensitivity; MOFLUX

56

57 **1. Introduction**

58 Forests contain large stocks of carbon which represent the long-term, accumulated
59 difference between two massive fluxes—photosynthesis and respiration. As a result,
60 forests exert significant leverage on the global carbon cycle and greenhouse gas
61 balance (Hutyra et al., 2008; Raj et al., 2016). Determination of photosynthesis (gross
62 primary production, GPP) and respiration (ecosystem respiration, R_{eco}) in forest
63 ecosystems will help elucidate the key elements modulating the carbon-climate
64 connection (Moore et al., 2018). A major challenge in understanding and predicting
65 terrestrial carbon balance is that the commonly-used variable ecosystem respiration
66 (R_{eco}) integrates several different soil and plant processes, each of which is mediated
67 by different ecophysiological mechanisms with different sensitivity to environmental
68 drivers (Hutyra et al., 2008; Ogee et al., 2004). A necessary step towards overcoming
69 this challenge is to partition R_{eco} into its aboveground plant respiration (R_{above}) and
70 belowground root and soil respiration (R_{below}), which will lead to better interpreting the
71 seasonal and interannual variations in R_{eco} and their environmental controls (Wang et
72 al., 2017; Xu and Baldocchi, 2004).

73 Chamber-based methods have been widely used to measure foliar, trunk, and soil
74 plus root respiratory fluxes in R_{eco} (Gaumont-Guay et al., 2006; Wang et al., 2010).
75 However, modifications of the soil/plant environment (e.g., temperature and humidity)
76 in chambers may cause errors (Ohkubo et al., 2007; Wohlfahrt et al., 2005a), and
77 uncertainties in upscaling from chamber to ecosystem level may also introduce biases
78 (Bolstad et al., 2004; Miyama et al., 2006). Partitioning flux tower measurements of net
79 CO_2 exchange is another commonly used method for estimating GPP and R_{eco} (Lasslop
80 et al., 2010; Reichstein et al., 2005), which is usually based on temperature response
81 functions (Lasslop et al., 2012). However, R_{eco} is the sum of R_{above} and R_{below} which
82 respond differently to local environmental conditions such as temperature and moisture
83 (Brito et al., 2013). For example, R_{below} is mainly controlled by soil temperature and
84 moisture (Gilmanov et al., 2013), whereas air temperature controls R_{above} (Jassal et al.,
85 2007). Additionally, the Kok effect (Kok, 1948; Kok, 1949), which hypothesizes
86 existence of photoinhibition on leaf respiration, should only affect R_{above} , but not R_{below}
87 (Buckley et al., 2017; Heskel et al., 2013). Therefore, common CO_2 flux partitioning
88 algorithms (Lasslop et al., 2010; Reichstein et al., 2005) using a single-source
89 respiration model is thus an oversimplification which may result in biased R_{eco}

90 estimates (Wohlfahrt and Galvagno, 2017). Moreover, eddy-covariance (EC) systems
91 measure the CO₂ fluxes above the canopy, and the transport of CO₂ molecules from soil
92 surface to the sensor declines the coupling of observed fluxes with temperature (Lasslop
93 et al., 2012; Paul-Limoges et al., 2017). Therefore, separating R_{eco} components and
94 using proper driving temperatures are necessary to better understanding the role of R_{eco},
95 and can reduce uncertainties in the inferred GPP (Oikawa et al., 2017; Wohlfahrt and
96 Galvagno, 2017).

97 Continuous automated chamber measurements of R_{below}, in conjunction with EC-
98 measured R_{eco}, have been used to distinguish the responses of belowground and
99 aboveground components of R_{eco} to seasonal variations in their environmental controls
100 (Jassal et al., 2007; Rana et al., 2018). When root exclusion methods are combined with
101 soil chamber measurements, R_{below} can be further separated into heterotrophic and
102 autotrophic respiration (Dyukarev, 2017; Järveoja et al., 2018). However, these studies
103 did not jointly partition the net ecosystem exchange (NEE) of CO₂ into photosynthesis
104 and different components of R_{eco} (Oikawa et al., 2017). Since R_{eco} is composed of
105 multiple respiration sources with differing driving temperatures, estimates of GPP and
106 R_{eco} may be biased with a partitioning approach conceptualizing R_{eco} to originate from
107 a single source. It is therefore necessary to partition R_{eco} based on environmental factors
108 at the respiratory sources to better understand forest ecosystem carbon dynamics.

109 The present study intends to address the issues identified above. Our specific
110 objectives are to: (1) develop a three-way flux-partitioning algorithm that partitions
111 NEE into R_{above}, R_{below}, and GPP with explicit representation of temperature
112 sensitivities of different respiratory sources; (2) quantify the temporal dynamics in
113 R_{above}, R_{below}, and GPP, and compare R_{above}, R_{below}, and GPP derived from daytime NEE
114 and soil respiration to those obtained with nighttime data; and (3) calculate the
115 potential Kok effect on the estimates of R_{above} and GPP. We used decade-long (2006-
116 2015) dataset of hourly continuous chamber measurements of soil respiration in
117 conjunction with EC observations of net ecosystem carbon exchange at the Missouri
118 Ozark AmeriFlux (MOFLUX) site, USA.

119

120 **2. Materials and methods**

121 **2.1. Site description**

122 The measurements were made in oak-hickory (*Quercus-Carya*) forest at MOFLUX site

123 (38°44'N, 92°12'W). The soils are Weller silt loam and Clinkenbeard very flaggy clay
124 loam (Young et al., 2001), and white oak (*Quercus alba*), black oak (*Q. velutina*),
125 shagbark hickory (*Carya ovata*), and sugar maple (*Acer saccharum*) are the dominant
126 tree species. The stand density is about 583 trees ha⁻¹, canopy height ranges from 18 to
127 20 m, and the seasonal peak leaf area index is about 3.2 to 3.7 m² m⁻². For further details
128 about the site, see Gu et al. (2006), Yang et al. (2010), and Liu et al. (2020).

129 **2.2. NEE and soil respiration measurements**

130 NEE was measured by EC technique while soil respiration (including root and soil
131 respiration) was measured by automated chambers (Liu et al., 2020). The data presented
132 here were collected between 2006 and 2015.

133 Half-hourly NEE values were calculated using fundamental equation of EC (Gu et
134 al., 2012) and the quality checked with criteria defined by Mauder and Foken (2011).
135 The data was partitioned into daytime and nighttime sets using an incoming solar
136 radiation threshold of 20 W m⁻². For daytime periods, data gaps due to instrument
137 malfunction, power failure, and calibration schedule were filled using the mean diurnal
138 variation (MDV) approach (Gu et al., 2016). And for the nighttime, the objective
139 friction velocity filtering approach of Gu et al. (2005) was used to screen for data
140 affected by low-turbulence conditions. In general, nighttime NEE (NEE_{night}) represents
141 soil and plant respiration (nighttime R_{eco}, R_{eco,night}) because plants do not
142 photosynthesize at night. However, our data measured by EC was not consistently
143 higher than chamber-measured nighttime R_{below} (R_{below,night}). NEE_{night} could be
144 underestimated during atmospherically stable nights (Miao et al., 2017). To evaluate
145 this, we created graphs to describe the changes in the difference between NEE_{night} and
146 R_{below,night} at low windspeed (Fig. 1). In summer, NEE_{night} was about 29.9% lower than
147 R_{below,night} when windspeed below 2.66 m s⁻¹, while in winter, 13.9% of NEE_{night} was
148 lower than R_{below,night} when windspeed below 1.77 m s⁻¹ (Fig. 1). Our data showed that
149 NEE_{night} was possibly underestimated due to inadequate turbulent mixing at low
150 windspeed. Thus, the Lloyd and Taylor (1994) model was made using data at high
151 windspeed, replacing data at low windspeed, that is, we discarded sporadic records of
152 NEE_{night} that were less than R_{below,night} when summer and winter windspeed exceeded
153 2.66 and 1.77 m s⁻¹, and developed model for NEE_{night} to predict data when windspeed
154 below 2.66 and 1.77 m s⁻¹, respectively. Meanwhile, R_{below} was gap-filled using the
155 Lloyd and Taylor (1994) model, and gaps in air temperature, atmospheric vapor

156 pressure deficit (VPD), and global radiation were filled by the marginal distribution
157 sampling (MDS) method.

158 **2.3. R_{above} , R_{below} , and GPP estimation**

159 The net flux of carbon from aboveground ecosystem components is defined as the net
160 aboveground exchange (NAE), the difference between the CO_2 assimilation by
161 photosynthesis (i.e., gross primary productivity, GPP) and foliar and trunk respiration
162 (aboveground plant respiration, R_{above}). Following the micrometeorological convention,
163 we define R_{above} and R_{below} as positive and GPP as negative, and a net flux of CO_2 to
164 the atmosphere represents a positive NAE or NEE.

165
$$NAE = NEE - R_{\text{below}} = -\frac{\alpha\beta R_g}{\alpha R_g + \beta} + R_{\text{above}} \quad (1)$$

166
$$R_{\text{above}} = R_{\text{ref}} \exp\left(E_0\left(\frac{1}{T_{\text{ref}} - T_0} - \frac{1}{T_{\text{air}} - T_0}\right)\right) \quad (2)$$

167 where NAE ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is net aboveground exchange; NEE ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is net
168 ecosystem exchange, measured with EC flux tower; R_{below} ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is
169 belowground soil respiration (including litter, soil, and root respiration), measured with
170 automated chambers; R_{above} ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is aboveground plant respiration (the sum of
171 foliar and trunk respiration), modelled with exponential regression equation (Lloyd and
172 Taylor, 1994); $\frac{\alpha\beta R_g}{\alpha R_g + \beta}$ is a rectangular hyperbolic light-response curve, used to estimate
173 GPP; α ($\mu\text{mol J}^{-1}$) is the canopy-scale quantum yield; β ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is the maximum
174 rate of CO_2 uptake of the canopy at light saturation (for details, see Lasslop et al.
175 (2010)); R_g (W m^{-2}) is global radiation; R_{ref} ($\mu\text{mol m}^{-2} \text{ s}^{-1}$) is the basal respiration at
176 reference temperature (T_{ref}) of 15°C ; E_0 (K) is temperature sensitivity; T_{air} ($^\circ\text{C}$) is air
177 temperature; and T_0 ($^\circ\text{C}$) is constant (-46.02°C).

178 Using the half-hourly chamber-measured soil respiration and EC-measured NEE
179 of CO_2 , the flux partitioning algorithms of Lasslop et al. (2010) were applied to separate
180 NAE (the difference between NEE and R_{below}) into R_{above} and GPP. This approach is
181 hereafter referred to as the daytime NEE and soil respiration (DNS) method. It is
182 reasonable to assume that R_{above} responds to air temperature measured above canopy
183 while R_{below} responds to soil temperature and moisture. The air temperature-sensitive
184 portion of NEE was assigned to R_{above} , the soil temperature and moisture-sensitive
185 portion of NEE was assigned to R_{below} , and the R_g -sensitive portion of NEE was
186 assigned to GPP. At first, NAE was derived from NEE by subtracting R_{below} , which was
187 measured with automated chambers. The GPP and R_{above} portions were then modeled

188 as a function of NAE, R_g , and T_{air} , using the rectangular hyperbola and exponential
189 function, respectively. E_0 was estimated every 7 days with a 15-day moving window
190 using nighttime NAE and T_{air} . With the fixed E_0 , the remaining parameters (α , β , and
191 R_{ref}) were estimated by fitting the entire model (Eq. 1) to the daytime data (daytime
192 NAE, T_{air} , T_{ref} , VPD, and R_g). Based on the intercept of a light-response curve fit to
193 daytime observations, GPP and daytime R_{above} ($R_{above,day}$) were estimated from the
194 regression of daytime NAE against R_g (Eq. 1). The parameters E_0 and R_{ref} were then
195 used to extrapolate nighttime R_{above} ($R_{above,night}$) with T_{air} (Eq. 2), and total R_{above} was
196 the sum of $R_{above,day}$ and $R_{above,night}$. Daily and annual total R_{above} , R_{below} , and GPP
197 calculated from summing half-hourly R_{above} , R_{below} , and GPP, respectively.

198 To evaluate and compare the performance and accuracy of the partitioning
199 methods, the flux partitioning algorithms for estimating daytime respiration from
200 nighttime measurements were also applied to separate NEE into R_{above} , R_{below} , and GPP,
201 hereafter referred to as the nighttime NEE and soil respiration (NNS) method. Based
202 on the assumption that $R_{above,day}$ was of similar magnitude and responsiveness as
203 $R_{above,night}$, $R_{above,night}$ was first calculated as the difference between NEE_{night} and
204 $R_{below,night}$, the parameters E_0 and R_{ref} were estimated using the exponential regression
205 of $R_{above,night}$ with nighttime T_{air} and then were used to extrapolate $R_{above,day}$ with daytime
206 T_{air} (Eq. 2), and total R_{above} was the sum of $R_{above,day}$ and $R_{above,night}$. GPP was estimated
207 by subtracting $R_{above,day}$ and daytime R_{below} ($R_{below,day}$) from daytime values of NEE.

208 The Lloyd-Taylor model (Eq. 2) was used to describe the response of half-hourly
209 R_{above} and R_{below} to air and soil temperature, respectively. In addition, we also simulated
210 the relationship of R_{eco} with air and soil temperature to compare the difference between
211 air and soil temperature sensitivity. The parameter E_0 characterizes the temperature
212 sensitivity of respiration processes (Kruse et al., 2011). T_{ref} and T_0 are the same as that
213 in Eq. 2. One-way ANOVA was performed to examine the difference in temperature
214 sensitivity of R_{above} , R_{below} , and R_{eco} (at $p < 0.05$).

215 It is known that leaf respiration is often inhibited by light, that is, leaf respiration
216 is lower during the day than at night for the same temperature (Tcherkez et al., 2009),
217 so daytime R_{eco} ($R_{eco,day}$) is likely to differ from that at night (Janssens et al., 2001). The
218 extrapolation of R_{eco} would underestimate $R_{eco,night}$ by DNS method (Keenan et al., 2019)
219 and overestimate $R_{eco,day}$ and GPP by NNS method (Wohlfahrt et al., 2005b). Keenan
220 et al. (2019) calculated reference respiration (R_{ref}) separately from daytime and

221 nighttime observations, and used the difference between them as an estimate of the
222 apparent inhibition of daytime ecosystem respiration. Available evidence, however,
223 indicates that the Kok effect could only inhibit R_{above} but not R_{below} (Tcherkez et al.,
224 2017; Wohlfahrt et al., 2005b), the flux partitioning algorithm (Keenan et al., 2019)
225 incorporating R_{below} into the light inhibition of foliar respiration would aggravate
226 photoinhibition effect and thus under- or overestimate inhibition biases in both R_{above}
227 and GPP. Herein, using the flux partitioning algorithms of Keenan et al. (2019), we
228 calculated the estimation bias in R_{above} and GPP resulted from neglecting the light
229 inhibition of leaf respiration in the DNS and NNS method. At first, we estimated
230 nighttime R_{ref} from nighttime data as in the NNS method, and estimated daytime R_{ref}
231 from daytime data as in the DNS method, and then applied daytime R_{ref} to estimate
232 daytime R_{above} only and applied nighttime R_{ref} to estimate nighttime R_{above} . The GPP in
233 the daytime method was estimated from the light-response curve, and GPP in the
234 nighttime method was estimated by subtracting $R_{\text{above,day}}$ and $R_{\text{below,day}}$ from daytime
235 values of NEE. That is, the parameters E_0 and nighttime R_{ref} were estimated from
236 nighttime data ($R_{\text{above,night}}$ and T_{air}) and parameters α , β , and daytime R_{ref} were estimated
237 from daytime data ($R_{\text{above,day}}$, T_{air} , T_{ref} , VPD, and R_g). The estimates of R_{above} and GPP
238 were compared with those estimated from DNS and NNS method to obtain the
239 estimation bias.

240

241 **3. Results**

242 **3.1. Measured NEE**

243 Daily mean NEE averaged $-0.92 \pm 0.14 \text{ g C m}^{-2} \text{ d}^{-1}$ (mean \pm S.E.) from 2006 to 2015 (Fig.
244 2). Daily NEE was positive during the non-growing season, but declined rapidly and
245 became negative at the start of growing season, and then rise to positive as the growing
246 season progressed (Fig. 2). Annual mean net CO_2 uptake (i.e. NEE) was 618 g C m^{-2}
247 year^{-1} with the maximum in 2013 ($807 \text{ g C m}^{-2} \text{ year}^{-1}$) and minimum in 2012 (354 g C
248 $\text{m}^{-2} \text{ year}^{-1}$) (Fig. 2).

249 **3.2. Estimated R_{above} and measured R_{below}**

250 Daily mean R_{above} (2006–2015) estimated by DNS ($R_{\text{above-DNS}}$) and NNS ($R_{\text{above-NNS}}$)
251 method averaged 0.67 ± 0.04 and $1.04 \pm 0.05 \text{ g C m}^{-2} \text{ d}^{-1}$, respectively (Fig. 3, Table 1).
252 Daily mean $R_{\text{above-DNS}}$ and $R_{\text{above-NNS}}$ during the non-growing season were 0.34 ± 0.03
253 and $0.54 \pm 0.04 \text{ g C m}^{-2} \text{ d}^{-1}$, and corresponding growing season R_{above} were 0.99 ± 0.06

254 and $1.53 \pm 0.07 \text{ g C m}^{-2} \text{ d}^{-1}$, respectively (Fig. 3, Table 1). Annual mean $R_{\text{above-DNS}}$ at
255 $243 \pm 17.2 \text{ g C m}^{-2} \text{ year}^{-1}$ was lower than $R_{\text{above-NNS}}$ at $378 \pm 25.3 \text{ g C m}^{-2} \text{ year}^{-1}$ with
256 $R_{\text{above-DNS}}$ exceeding $R_{\text{above-NNS}}$ during 2006 (Fig. 4).

257 Daily mean R_{below} (i.e. soil respiration) measured with automated chambers
258 averaged $2.21 \pm 0.09 \text{ g C m}^{-2} \text{ d}^{-1}$ (Fig. 3, Table 1). Seasonal changes in R_{below} followed a
259 pattern similar to that of R_{above} . It was moderate in late spring (mean $3.31 \pm 0.06 \text{ g C m}^{-2} \text{ d}^{-1}$ in
260 May), increased sharply to a peak in summer (mean $4.95 \pm 0.08 \text{ g C m}^{-2} \text{ d}^{-1}$ in
261 July), and then decreased in autumn (mean $1.62 \pm 0.03 \text{ g C m}^{-2} \text{ d}^{-1}$ in October) (Fig. 3).
262 Annual mean R_{below} was $806 \pm 38.9 \text{ g C m}^{-2} \text{ year}^{-1}$ with the minimum in 2012 (540 g C
263 $\text{m}^{-2} \text{ year}^{-1}$) and maximum in 2010 (931 g C $\text{m}^{-2} \text{ year}^{-1}$) (Fig. 4).

264 Annual mean R_{eco} estimated by DNS ($R_{\text{eco-DNS}}$) and NNS ($R_{\text{eco-NNS}}$) method
265 averaged 1049 ± 38.4 and $1184 \pm 29.8 \text{ g C m}^{-2} \text{ year}^{-1}$, respectively (Fig. 4). The
266 contribution of $R_{\text{above-DNS}}$ and $R_{\text{above-NNS}}$ to R_{eco} averaged 23.4% and 32.1%, while the
267 contribution of corresponding R_{below} to R_{eco} averaged 76.6% and 67.9%, respectively
268 (Fig. 3-4, Table 1). R_{below} contributed more than R_{above} to R_{eco} at the MOFLUX site.

269 **3.3. Estimated GPP**

270 GPP also followed a strong seasonal pattern, monthly mean daytime GPP by DNS
271 (GPP_{DNS}) and NNS (GPP_{NNS}) method increased from 7.07 ± 0.51 and $7.65 \pm 0.68 \text{ g C m}^{-2} \text{ d}^{-1}$ in May up to 9.50 ± 0.64 and $10.2 \pm 0.81 \text{ g C m}^{-2} \text{ d}^{-1}$ in June, and then decreased
272 gradually to 2.09 ± 0.20 and $2.24 \pm 0.34 \text{ g C m}^{-2} \text{ d}^{-1}$ in October, respectively (Fig. 5).
273 Annual mean GPP_{DNS} and GPP_{NNS} were 1170 ± 54.0 and $1266 \pm 57.9 \text{ g C m}^{-2} \text{ year}^{-1}$, and
274 annual GPP varied from a minimum of 781 and 860 g C $\text{m}^{-2} \text{ year}^{-1}$ in 2012 to a
275 maximum of 1368 and 1491 g C $\text{m}^{-2} \text{ year}^{-1}$ in 2009, respectively (Fig. 6). At annual
276 time scale, NNS method estimates had GPP values higher than estimates obtained from
277 DNS method (Fig. 6).

279 **3.4. Temperature sensitivity**

280 The temperature sensitivities (i.e., the E_0 value) of R_{above} , R_{below} , and R_{eco} varied greatly
281 from year to year (Table 2-3). Overall, annual mean E_0 of $R_{\text{above-DNS}}$ and $R_{\text{above-NNS}}$
282 averaged 197 ± 14.8 and $186 \pm 9.95 \text{ K}$, respectively, and annual mean E_0 of R_{below} was on
283 average $388 \pm 32.0 \text{ K}$ (Table 2). Meanwhile, annual mean E_0 of $R_{\text{eco-DNS}}$ calculated by air
284 and soil temperature were 234 ± 13.8 and $346 \pm 24.1 \text{ K}$, and corresponding E_0 of $R_{\text{eco-NNS}}$
285 were 225 ± 11.3 and $334 \pm 22.2 \text{ K}$, respectively (Table 3). Throughout the study period,

286 the E_θ of R_{below} greatly exceeded that of R_{above} (Fig. 7) and was thus driving the apparent
287 temperature sensitivity of R_{eco} (Fig. 8).

288 **3.5. Estimation bias**

289 The R_{ref} estimated by daytime and nighttime data averaged 0.65 ± 0.18 and 0.95 ± 0.09
290 $\mu\text{mol m}^{-2} \text{s}^{-1}$, respectively (Fig. 9). When leaf respiration reduction in light was ignored,
291 the DNS method showed no bias in GPP on any timescale, and led to an underestimation
292 of R_{above} about 20.4% (Fig. 10). In contrast, if the reduction in leaf respiration by light
293 was ignored, the NNS method led to an overestimation of GPP about 4.7%, and an
294 overestimation of R_{above} about 23.9% (Fig. 10).

295

296 **4. Discussion**

297 We developed a three-way flux-partitioning algorithm to partition NEE into R_{above} ,
298 R_{below} , and GPP. Our algorithm took advantage of the availability of continuous
299 chamber-measured soil respiration and EC-measured NEE of CO_2 , differential
300 responses of GPP and respiration to environmental conditions, and the fact that R_{above}
301 responds to air temperature measured above canopy while R_{below} responds to soil
302 temperature and moisture. CO_2 flux partitioning algorithms have been widely used to
303 partition the net ecosystem CO_2 exchange into two component fluxes, GPP and R_{eco}
304 (Lasslop et al., 2010; Reichstein et al., 2005). This procedure is usually based on a semi-
305 empirical model relating respiration to temperature (Lasslop et al., 2012). However,
306 ecosystem respiratory fluxes consist of aboveground plant respiration, and
307 belowground root and soil respiration, which are mainly driven by air temperature, and
308 soil temperature and moisture, respectively (Barba et al., 2018; Järveoja et al., 2018).
309 Soil temperature is always dampened with smaller variability compared to air
310 temperature (Li et al., 2019), which contributed to a higher temperature sensitivity of
311 R_{below} from soil temperature than that of R_{above} from air temperature in our results.
312 Several studies have studied the time series of air temperature (Greco and Baldocchi,
313 1996; Valentini et al., 1996), soil temperature (Black et al., 1996; Goulden et al., 1996),
314 and a weighted mean of soil and air temperature (Kutzbach et al., 2007; Lasslop et al.,
315 2012) with respect to their ability to describe R_{eco} . However, there is currently no
316 agreement as to which temperature is the most appropriate for modelling R_{eco} (Lasslop
317 et al., 2012; Wohlfahrt and Galvagno, 2017). Our results showed that the temperature
318 sensitivity of R_{eco} responded differently to air and soil temperature. Moreover, the

319 results of Wohlfahrt and Galvagno (2017) revealed that the phase shift between air and
320 soil temperature yielded biased R_{eco} estimates, and the bias could be avoided by
321 adopting a dual-source respiration model consisting of an above- and a belowground
322 respiration source with corresponding driving temperatures. However, Wang et al.
323 (2001) found that resolving the contribution of plant and soil respiration to R_{eco} was
324 impossible due to a strong correlation between leaf and soil respiration parameters.
325 Wohlfahrt et al. (2005a) reported that R_{above} and R_{below} parameters could be derived
326 from measurements of R_{eco} , provided available data cover a wide range of fractional
327 contributions of plants and soil to R_{eco} . Moreover, Oikawa et al. (2017) thought that
328 R_{below} measurements can be combined with measurements of R_{above} and/or modeling to
329 partition NEE. Therefore, different respiration source each driven by a corresponding
330 temperature can be taken advantage of to partition NEE into R_{above} , R_{below} , and GPP.

331 The three-way CO_2 flux-partitioning algorithm provided an effective means of
332 evaluating the temporal dynamics of aboveground plant respiration (R_{above}),
333 belowground root and soil respiration (R_{below}), and gross primary production (GPP).
334 Results of EC measurements presented here indicated that as plants took up CO_2 from
335 the start of green-up (late April to early May) to the end of senescence (mid-to-late
336 October) (Fig. 5), daily R_{above} and R_{below} also increased gradually at the start of the
337 growing season and then decreased as the growing season progressed (Fig. 3).
338 Meanwhile, at the growing season scale, the daily variations of NEE were most closely
339 related to GPP rather than to R_{above} and R_{below} . These suggested that the seasonal rise
340 and decline in photosynthesis and respiration of forest ecosystems corresponded closely
341 with the timing of the phenological development and senescence (Järveoja et al., 2018).
342 In addition, the seasonal dynamics of R_{above} , R_{below} , and GPP was likely related to the
343 timing, frequency, and amount of rain events (Unger et al., 2009). For example, the
344 significant drop in precipitation for August 2013 led to a gradual reduction in R_{below} ,
345 and the extreme precipitation events in July and October 2009 also suppressed R_{below}
346 (Liu et al., 2020). In contrast to R_{below} , we found that R_{above} did not strongly respond to
347 precipitation changes. Year 2012 was the driest of the last 10 years (Liu et al., 2020),
348 and annual R_{below} in this year was lowest, but annual R_{above} did not decrease significantly
349 (Fig. 4). Moreover, we found compelling evidence of nonlinear responses of soil
350 respiration to soil moisture (Liu et al., 2020), while the variation of R_{above} with soil
351 moisture was not obvious (data not shown). This indicates that there are other factors

352 such as temperature in addition to rain events that jointly regulate R_{above} . Meanwhile,
353 GPP also responded positively to precipitation change, severe drought events in 2012
354 caused important reductions in GPP. Then there was a gradual increase of GPP in 2013
355 due to higher precipitation but R_{below} remained low, which reached normal values in
356 2014 (Fig. 4, 6). The seasonal and annual variability in estimated R_{above} , R_{below} , and GPP
357 demonstrated the importance of long-term high-resolution time series when interpreting
358 ecosystem data (van Gorsel et al., 2008).

359 Many studies have combined EC CO₂ flux partitioning results and soil respiration
360 measurements to investigate the components, drivers and temporal dynamics of
361 ecosystem respiration (Gaumont-Guay et al., 2006; Järveoja et al., 2018; Jassal et al.,
362 2007; Rana et al., 2018; Suleau et al., 2011). However, there is still a lack of detailed
363 knowledge on above- and belowground respiratory components with differing driving
364 temperatures. One underlying reason is that the EC and chamber technique do not allow
365 for quantifying the individual fluxes driven by different temperatures with a high
366 temporal resolution. In this study, we provided year-round high temporal resolution
367 estimate of R_{above} from the balance between the hourly NEE and R_{below} measurements.
368 Our three-way CO₂ flux-partitioning results demonstrated that R_{above} and R_{below}
369 accounted for 13.6-33.1% and 66.9-86.4% of the total R_{eco} , respectively, and the ratio
370 varied with the seasons (Table 1). Our R_{below} to R_{eco} ratio was similar to data from Jassal
371 et al. (2007), who found that $R_{\text{below}}/R_{\text{eco}}$ varied between 52% in spring and 86% in
372 winter. Soil respiration was a large source of total ecosystem respiration and respiration
373 from aboveground sources was only a small component of R_{eco} (Wang et al., 2010).
374 Consequently, interannual variation of R_{eco} at the site was controlled mostly by
375 interannual variation of R_{below} . The ratio of R_{above} and R_{below} to GPP could be used to
376 evaluate the relative contribution of component respiration and photosynthesis to the
377 total ecosystem carbon exchange (Dyukarev, 2017). Mean annual R_{above} , R_{below} , and
378 GPP were 243, 806, and 1170 g C m⁻², respectively, with annual R_{eco} accounting for
379 89.6% of GPP, of which 68.8% was lost as belowground root and soil respiration and
380 20.8% lost as aboveground plant respiration, and leaving only 10% of autochthonous
381 carbon fixation in the ecosystem (Fig 4, 6). Our results were similar to data from Jassal
382 et al. (2007), who found that about 54% of carbon fixed in GPP was lost as autotrophic
383 respiration and the other 32% was lost in the decomposition of soil organic matter and

384 litter. The studied ecosystem is a sink of carbon according to modelling and observation
385 results.

386 This study compared EC-derived nighttime NEE to nighttime soil respiration
387 measured with automated chambers. On average, EC-measured NEE_{night} were generally
388 lower than chamber-measured $R_{below,night}$ when summer and winter windspeed below
389 2.66 and 1.77 $m\ s^{-1}$, respectively (Fig. 1). This was consistent with other studies (Oechel
390 et al., 1998; Wang et al., 2010). Several studies have reported lower estimates of
391 NEE_{night} derived from EC measurements (Bolstad et al., 2004; Gaumont-Guay et al.,
392 2006; Griffis et al., 2004; Lavigne et al., 1997; Miyama et al., 2006), while others have
393 reported good agreement between the two techniques during periods of canopy absence
394 (Myklebust et al., 2008; Reth et al., 2005). Although chamber measurements are not
395 free of uncertainty (Gaumont-Guay et al., 2006), previous comparisons between
396 chamber- and EC-based estimates have provided evidence that EC method likely
397 produces biased estimates of forest CO_2 fluxes (Griffis et al., 2003; Khomik et al., 2010;
398 Wang et al., 2017), and underestimated NEE_{night} could be attributed to CO_2
399 accumulation near the surface in stable or calm conditions (Aubinet et al., 2001;
400 Loescher et al., 2006) which cannot be adequately corrected for by a profiling system
401 at a single location. This supported Law et al. (1999) and Myklebust et al. (2008) who
402 assumed that with higher u_* threshold, greater mixing of the canopy air would result in
403 more accurate estimates of NEE_{night} (Ohkubo et al., 2007; Wang et al., 2010). In many
404 studies, a correction was applied to EC-measured NEE_{night} to address the
405 underestimation of R_{eco} during atmospherically stable nights (Janssens et al., 2001;
406 Ohkubo et al., 2007). For example, van Gorsel et al. (2008) used the maximum NEE in
407 the early evening to build a temperature response function for nighttime R_{eco} . Janssens
408 et al. (2001) replaced NEE_{night} with a value computed from a temperature response
409 function when u_* falls below a threshold. The method most widely used to correct for
410 flux underestimation during stable nights was applied in this study. It consists of
411 replacing the flux measured during stable nighttime periods by a value simulated with
412 a temperature response function derived during well-mixed nighttime conditions.

413 Estimates of R_{above} , R_{below} , and GPP derived from simplified NEE models are
414 associated with large uncertainties (Janssens et al., 2001). One cause of this is failure
415 to incorporate the light inhibition of foliar respiration (Heskel et al., 2013). $R_{eco,day}$ is
416 likely to differ from $R_{eco,night}$ because of light-induced inhibition of leaf respiration

417 (Janssens et al., 2001). The extrapolation of R_{eco} between day and night conditions may
418 result in over- or underestimation in both canopy respiration and ecosystem carbon
419 fluxes (Crous et al., 2012; Heskel and Tang, 2018; Kroner and Way, 2016). Keenan et
420 al. (2019) developed a flux partitioning algorithm that could detect an apparent
421 ecosystem-scale inhibition of daytime respiration. However, the Kok effect could only
422 inhibit canopy respiration but not soil plus root respiratory fluxes (Tcherkez et al., 2017;
423 Wohlfahrt et al., 2005b). Incorporating soil respiration into the light inhibition of foliar
424 respiration may aggravate photoinhibition effect and thus under- or overestimate
425 inhibition biases in both canopy respiration and GPP. Using the flux partitioning
426 algorithms of Keenan et al. (2019), we calculated the estimation bias in R_{above} and GPP
427 due to the light inhibition of leaf respiration, and the bias we reported was in line with
428 Sun et al. (2014) who showed that canopy respiration and GPP were overestimated by
429 approximately 20.4% and 4.6%, respectively. These results provide valuable insight
430 on how variation in light inhibition of respiration affects the prediction of aboveground
431 carbon balance. Further, future research should consider partitioning R_{eco} into canopy
432 leaf and residual (trunk and soil) respiration, and incorporating light inhibition of
433 respiration into NEE models to accurately predict rates of carbon exchange at canopy
434 level (Crous et al., 2012).

435

436 **5. Conclusion**

437 This paper developed a three-way CO_2 flux-partitioning algorithm to decompose NEE
438 into R_{above} , R_{below} , and GPP. Using continuous chamber-measured soil respiration and
439 EC-measured NEE of CO_2 , we estimated R_{above} , R_{below} , and GPP over a decade for a
440 deciduous forest in the US Midwest. We found that R_{above} and R_{below} accounted for 13.6-
441 33.1% and 66.9-86.4% of the total R_{eco} , respectively and the percentages varied with
442 the seasons. Mean annual R_{above} , R_{below} , and GPP were 243, 806, and 1170 g C m^{-2} ,
443 respectively, with annual R_{eco} accounting for 89.6% of GPP, of which 68.8% was lost
444 as R_{below} and 20.8% lost as R_{above} , leaving only 10% of carbon fixation in ecosystems.
445 The DNS method underestimated annual R_{above} (about 20.4%), and the NNS method
446 overestimated R_{above} (about 23.9%) and GPP (about 4.7%). We found that belowground
447 respiration has much greater sensitivity to temperature than aboveground respiration
448 does. Our findings suggest that accounting for the respiratory heterogeneity in the

449 various ecosystem components is crucial for understanding and predicting ecosystem
450 carbon balance.

451

452 **Acknowledgements**

453 This research was supported by the Natural Science Foundation of Hebei Province
454 (D2021503009), the “Strategic Priority Research Program” of the Chinese Academy of
455 Sciences (XDA28020303, XDA26040103), the National Key Research and
456 Development Program of China (2016YFC0500802) and Visiting Scholars Program of
457 Chinese Academy of Sciences. LG is supported by the U.S. Department of Energy
458 (DOE), Office of Science, Biological and Environmental Research Program. ORNL is
459 managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.

460

461 **References**

462 Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M. and Laitat,
463 E., 2001. Long term carbon dioxide exchange above a mixed forest in the
464 Belgian Ardennes. Agricultural and Forest Meteorology, 108(4): 293-315.

465 Barba, J., Cueva, A., Bahn, M., Barron-Gaffordd, G.A., Bond-Lamberty, B., Hanson,
466 P.J., Jaimes, A., Kulmala, L., Pumpanen, J., Scott, R.L., Wohlfahrt, G. and
467 Vargas, R., 2018. Comparing ecosystem and soil respiration: Review and key
468 challenges of tower-based and soil measurements. Agricultural and Forest
469 Meteorology, 249: 434-443.

470 Black, T.A., DenHartog, G., Neumann, H.H., Blanken, P.D., Yang, P.C., Russell, C.,
471 Nesic, Z., Lee, X., Chen, S.G., Staebler, R. and Novak, M.D., 1996. Annual
472 cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen
473 forest. Global Change Biology, 2(3): 219-229.

474 Bolstad, P.V., Davis, K.J., Martin, J., Cook, B.D. and Wang, W., 2004. Component and
475 whole-system respiration fluxes in northern deciduous forests. Tree Physiology,
476 24(5): 493-504.

477 Brito, P., Soledad Jimenez, M., Morales, D. and Wieser, G., 2013. Assessment of
478 ecosystem CO₂ efflux and its components in a *Pinus canariensis* forest at the
479 treeline. Trees-Structure and Function, 27(4): 999-1009.

480 Buckley, T.N., Vice, H. and Adams, M.A., 2017. The Kok effect in *Vicia faba* cannot
481 be explained solely by changes in chloroplastic CO₂ concentration. New

482 Phytologist, 216(4): 1064-1071.

483 Crous, K.Y., Zaragoza-Castells, J., Ellsworth, D.S., Duursma, R.A., Loew, M., Tissue,
484 D.T. and Atkin, O.K., 2012. Light inhibition of leaf respiration in field-grown
485 *Eucalyptus saligna* in whole-tree chambers under elevated atmospheric CO₂ and
486 summer drought. Plant Cell and Environment, 35(5): 966-981.

487 Dyukarev, E.A., 2017. Partitioning of net ecosystem exchange using chamber
488 measurements data from bare soil and vegetated sites. Agricultural and Forest
489 Meteorology, 239: 236-248.

490 Gaumont-Guay, D., Black, T.A., Griffis, T.J., Barr, A.G., Morgenstern, K., Jassal, R.S.
491 and Nesic, Z., 2006. Influence of temperature and drought on seasonal and
492 interannual variations of soil, bole and ecosystem respiration in a boreal aspen
493 stand. Agricultural and Forest Meteorology, 140(1): 203-219.

494 Gilmanov, T.G., Wylie, B.K., Tieszen, L.L., Meyers, T.P., Baron, V.S., Bernacchi, C.J.,
495 Billesbach, D.P., Burba, G.G., Fischer, M.L., Glenn, A.J., Hanan, N.P., Hatfield,
496 J.L., Heuer, M.W., Hollinger, S.E., Howard, D.M., Matamala, R., Prueger, J.H.,
497 Tenuta, M. and Young, D.G., 2013. CO₂ uptake and ecophysiological
498 parameters of the grain crops of midcontinent North America: Estimates from
499 flux tower measurements. Agriculture, Ecosystems & Environment, 164: 162-
500 175.

501 Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C. and Wofsy, S.C., 1996.
502 Measurements of carbon sequestration by long-term eddy covariance: Methods
503 and a critical evaluation of accuracy. Global Change Biology, 2(3): 169-182.

504 Greco, S. and Baldocchi, D.D., 1996. Seasonal variations of CO₂ and water vapour
505 exchange rates over a temperate deciduous forest. Global Change Biology, 2(3):
506 183-197.

507 Griffis, T.J., Black, T.A., Gaumont-Guay, D., Drewitt, G.B., Nesic, Z., Barr, A.G.,
508 Morgenstern, K. and Kljun, N., 2004. Seasonal variation and partitioning of
509 ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest
510 Meteorology, 125(3-4): 207-223.

511 Griffis, T.J., Black, T.A., Morgenstern, K., Barr, A.G., Nesic, Z., Drewitt, G.B.,
512 Gaumont-Guay, D. and McCaughey, J.H., 2003. Ecophysiological controls on
513 the carbon balances of three southern boreal forests. Agricultural and Forest
514 Meteorology, 117(1-2): 53-71.

515 Gu, L., Falge, E.M., Boden, T., Baldocchi, D.D., Black, T.A., Saleska, S.R., Suni, T.,
516 Verma, S.B., Vesala, T., Wofsy, S.C. and Xu, L., 2005. Objective threshold
517 determination for nighttime eddy flux filtering. *Agricultural and Forest
518 Meteorology*, 128(3): 179-197.

519 Gu, L., Massman, W.J., Leuning, R., Pallardy, S.G., Meyers, T., Hanson, P.J., Riggs,
520 J.S., Hosman, K.P. and Yang, B., 2012. The fundamental equation of eddy
521 covariance and its application in flux measurements. *Agricultural and Forest
522 Meteorology*, 152: 135-148.

523 Gu, L., Meyers, T., Pallardy, S.G., Hanson, P.J., Yang, B., Heuer, M., Hosman, K.P.,
524 Riggs, J.S., Sluss, D. and Wullschleger, S.D., 2006. Direct and indirect effects
525 of atmospheric conditions and soil moisture on surface energy partitioning
526 revealed by a prolonged drought at a temperate forest site. *Journal of
527 Geophysical Research: Atmospheres*, 111(D16): doi:10.1029/2006jd007161.

528 Gu, L., Pallardy, S.G., Yang, B., Hosman, K.P., Mao, J., Ricciuto, D., Shi, X. and Sun,
529 Y., 2016. Testing a land model in ecosystem functional space via a comparison
530 of observed and modeled ecosystem flux responses to precipitation regimes and
531 associated stresses in a Central U.S. forest. *Journal of Geophysical Research:
532 Biogeosciences*, 121(7): 1884-1902.

533 Heskel, M.A., Atkin, O.K., Turnbull, M.H. and Griffin, K.L., 2013. Bringing the Kok
534 effect to light: A review on the integration of daytime respiration and net
535 ecosystem exchange. *Ecosphere*, 4(8): doi: 10.1890/ES13-00120.1.

536 Heskel, M.A. and Tang, J., 2018. Environmental controls on light inhibition of
537 respiration and leaf and canopy daytime carbon exchange in a temperate
538 deciduous forest. *Tree Physiology*, 38(12): 1886-1902.

539 Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N.,
540 Daube, B.C., de Camargo, P.B. and Wofsy, S.C., 2008. Resolving systematic
541 errors in estimates of net ecosystem exchange of CO₂ and ecosystem respiration
542 in a tropical forest biome. *Agricultural and Forest Meteorology*, 148(8-9): 1266-
543 1279.

544 Janssens, I.A., Lankreijer, H., Matteucci, G., Kowalski, A.S., Buchmann, N., Epron,
545 D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore,
546 S., Rebmann, C., Moors, E.J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev,
547 S., Clement, R., Gudmundsson, J., Minerbi, S., Berbigier, P., Ibrom, A.,

548 Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N.O., Vesala, T., Granier, A.,
549 Schulze, E.D., Lindroth, A., Dolman, A.J., Jarvis, P.G., Ceulemans, R. and
550 Valentini, R., 2001. Productivity overshadows temperature in determining soil
551 and ecosystem respiration across European forests. *Global Change Biology*,
552 7(3): 269-278.

553 Järveoja, J., Nilsson, M.B., Gažovič, M., Crill, P.M. and Peichl, M., 2018. Partitioning
554 of the net CO₂ exchange using an automated chamber system reveals plant
555 phenology as key control of production and respiration fluxes in a boreal
556 peatland. *Global Change Biology*, 24(8): 3436-3451.

557 Jassal, R.S., Black, T.A., Cai, T., Morgenstern, K., Li, Z., Gaumont-Guay, D. and Nesic,
558 Z., 2007. Components of ecosystem respiration and an estimate of net primary
559 productivity of an intermediate-aged Douglas-fir stand. *Agricultural and Forest
560 Meteorology*, 144(1-2): 44-57.

561 Keenan, T.F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, M. and
562 Wutzler, T., 2019. Widespread inhibition of daytime ecosystem respiration.
563 *Nature Ecology & Evolution*, 3(3): doi: 10.1038/s41559-019-0809-2.

564 Khomik, M., Arain, M.A., Brodeur, J.J., Peichl, M., Restrepo-Coupe, N. and McLaren,
565 J.D., 2010. Relative contributions of soil, foliar, and woody tissue respiration to
566 total ecosystem respiration in four pine forests of different ages. *Journal of
567 Geophysical Research-Biogeosciences*, 115: doi: 10.1029/2009JG001089.

568 Kok, B., 1948. A critical consideration of quantum yield of *Chlorella*-photosynthesis.
569 *Enzymologia*, 13: 1-56.

570 Kok, B., 1949. On the interrelation of respiration and photosynthesis in green plates.
571 *Biochimica Et Biophysica Acta*, 3(5-6): 625-631.

572 Kroner, Y. and Way, D.A., 2016. Carbon fluxes acclimate more strongly to elevated
573 growth temperatures than to elevated CO₂ concentrations in a northern conifer.
574 *Global Change Biology*, 22(8): 2913-2928.

575 Kruse, J., Rennenberg, H. and Adams, M.A., 2011. Steps towards a mechanistic
576 understanding of respiratory temperature responses. *New Phytologist*, 189(3):
577 659-677.

578 Kutzbach, L., Wille, C. and Pfeiffer, E.M., 2007. The exchange of carbon dioxide
579 between wet arctic tundra and the atmosphere at the Lena River Delta, Northern
580 Siberia. *Biogeosciences*, 4(5): 869-890.

581 Lasslop, G., Migliavacca, M., Bohrer, G., Reichstein, M., Bahn, M., Ibrom, A., Jacobs,
582 C., Kolari, P., Papale, D., Vesala, T., Wohlfahrt, G. and Cescatti, A., 2012. On
583 the choice of the driving temperature for eddy-covariance carbon dioxide flux
584 partitioning. *Biogeosciences*, 9(12): 5243-5259.

585 Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy,
586 P. and Wohlfahrt, G., 2010. Separation of net ecosystem exchange into
587 assimilation and respiration using a light response curve approach: critical
588 issues and global evaluation. *Global Change Biology*, 16(1): 187-208.

589 Lavigne, M.B., Ryan, M.G., Anderson, D.E., Baldocchi, D.D., Crill, P.M., Fitzjarrald,
590 D.R., Goulden, M.L., Gower, S.T., Massheder, J.M., McCaughey, J.H.,
591 Rayment, M. and Striegl, R.G., 1997. Comparing nocturnal eddy covariance
592 measurements to estimates of ecosystem respiration made by scaling chamber
593 measurements at six coniferous boreal sites. *Journal of Geophysical Research-
594 Atmospheres*, 102(D24): 28977-28985.

595 Law, B.E., Baldocchi, D.D. and Anthoni, P.M., 1999. Below-canopy and soil CO₂
596 fluxes in a ponderosa pine forest. *Agricultural and Forest Meteorology*, 94(3-
597 4): 171-188.

598 Li, Q., Song, X., Chang, S.X., Peng, C., Xiao, W., Zhang, J., Xiang, W., Li, Y. and
599 Wang, W., 2019. Nitrogen depositions increase soil respiration and decrease
600 temperature sensitivity in a Moso bamboo forest. *Agricultural and Forest
601 Meteorology*, 268: 48-54.

602 Liu, X., Liang, J. and Gu, L., 2020. Photosynthetic and environmental regulations of
603 the dynamics of soil respiration in a forest ecosystem revealed by analyses of
604 decadal time series. *Agricultural and Forest Meteorology*, 282: doi: 10.1016/
605 j.agrformet.2019.107863.

606 Lloyd, J. and Taylor, J.A., 1994. On the temperature-dependence of soil respiration.
607 *Functional Ecology*, 8(3): 315-323.

608 Loescher, H.W., Law, B.E., Mahrt, L., Hollinger, D.Y., Campbell, J. and Wofsy, S.C.,
609 2006. Uncertainties in, and interpretation of, carbon flux estimates using the
610 eddy covariance technique. *Journal of Geophysical Research-Atmospheres*,
611 111(D21): doi: 10.1029/2005JD006932.

612 Mauder, M. and Foken, T., 2011. Documentation and Instruction Manual of the Eddy
613 Covariance Software Package TK2. *Arbeitsergebnisse*, Universität Bayreuth,

614 Abteilung Mikrometeorologie, ISSN 1614-8916, 46.

615 Miao, G., Noormets, A., Domec, J.-C., Fuentes, M., Trettin, C.C., Sun, G., McNulty,
616 S.G. and King, J.S., 2017. Hydrology and microtopography control carbon
617 dynamics in wetlands: Implications in partitioning ecosystem respiration in a
618 coastal plain forested wetland. Agricultural and Forest Meteorology, 247: 343-
619 355.

620 Miyama, T., Kominami, Y., Tamai, K., Goto, Y., Kawahara, T., Jomura, M. and
621 Dannoura, M., 2006. Components and seasonal variation of night-time total
622 ecosystem respiration in a Japanese broad-leaved secondary forest. Tellus
623 Series B-Chemical and Physical Meteorology, 58(5): 550-559.

624 Moore, B., III, Crowell, S.M.R., Rayner, P.J., Kumer, J., O'Dell, C.W., O'Brien, D.,
625 Utembe, S., Polonsky, I., Schimel, D. and Lemen, J., 2018. The Potential of the
626 Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale
627 Constraints on the Carbon Cycle in the Americas. Frontiers in Environmental
628 Science, 6: doi: 10.3389/fenvs.2018.00109.

629 Myklebust, M.C., Hipps, L.E. and Ryel, R.J., 2008. Comparison of eddy covariance,
630 chamber, and gradient methods of measuring soil CO₂ efflux in an annual semi-
631 arid grass, *Bromus tectorum*. Agricultural and Forest Meteorology, 148(11):
632 1894-1907.

633 Oechel, W.C., Vourlitis, G.L., Brooks, S., Crawford, T.L. and Dumas, E., 1998.
634 Intercomparison among chamber, tower, and aircraft net CO₂ and energy fluxes
635 measured during the Arctic System Science Land-Atmosphere-Ice Interactions
636 (ARCSS-LAII) Flux Study. Journal of Geophysical Research-Atmospheres,
637 103(D22): 28993-29003.

638 Ogee, J., Peylin, P., Cuntz, M., Bariac, T., Brunet, Y., Berbigier, P., Richard, P. and
639 Ciais, P., 2004. Partitioning net ecosystem carbon exchange into net
640 assimilation and respiration with canopy-scale isotopic measurements: An error
641 propagation analysis with ¹³CO₂ and CO¹⁸O data. Global Biogeochemical
642 Cycles, 18(2): doi: 10.1029/2003GB002166.

643 Ohkubo, S., Kosugi, Y., Takanashi, S., Mitani, T. and Tani, M., 2007. Comparison of
644 the eddy covariance and automated closed chamber methods for evaluating
645 nocturnal CO₂ exchange in a Japanese cypress forest. Agricultural and Forest
646 Meteorology, 142(1): 50-65.

647 Oikawa, P.Y., Sturtevant, C., Knox, S.H., Verfaillie, J., Huang, Y.W. and Baldocchi,
648 D.D., 2017. Revisiting the partitioning of net ecosystem exchange of CO₂ into
649 photosynthesis and respiration with simultaneous flux measurements of ¹³CO₂
650 and CO₂, soil respiration and a biophysical model, CANVEG. Agricultural and
651 Forest Meteorology, 234: 149-163.

652 Paul-Limoges, E., Wolf, S., Eugster, W., Hoertnagl, L. and Buchmann, N., 2017.
653 Below-canopy contributions to ecosystem CO₂ fluxes in a temperate mixed
654 forest in Switzerland. Agricultural and Forest Meteorology, 247: 582-596.

655 Raj, R., Hamm, N.A.S., van der Tol, C. and Stein, A., 2016. Uncertainty analysis of
656 gross primary production partitioned from net ecosystem exchange
657 measurements. Biogeosciences, 13(5): 1409-1422.

658 Rana, G., Palatella, L., Scanlon, T.M., Martinelli, N. and Ferrara, R.M., 2018. CO₂ and
659 H₂O flux partitioning in a Mediterranean cropping system. Agricultural and
660 Forest Meteorology, 260: 118-130.

661 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P.,
662 Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T.,
663 Havráneková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A.,
664 Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M.,
665 Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
666 Vaccari, F., Vesala, T., Yakir, D. and Valentini, R., 2005. On the separation of
667 net ecosystem exchange into assimilation and ecosystem respiration: review and
668 improved algorithm. Global Change Biology, 11(9): 1424-1439.

669 Reth, S., Gockede, M. and Falge, E., 2005. CO₂ efflux from agricultural soils in Eastern
670 Germany - comparison of a closed chamber system with eddy covariance
671 measurements. Theoretical and Applied Climatology, 80(2-4): 105-120.

672 Suleau, M., Moureaux, C., Dufranne, D., Buysse, P., Bodson, B., Destain, J.-P.,
673 Heinesch, B., Debacq, A. and Aubinet, M., 2011. Respiration of three Belgian
674 crops: Partitioning of total ecosystem respiration in its heterotrophic, above- and
675 below-ground autotrophic components. Agricultural and Forest Meteorology,
676 151(5): 633-643.

677 Sun, J., Wu, J., Guan, D., Yao, F., Yuan, F., Wang, A. and Jin, C., 2014. Estimating
678 daytime ecosystem respiration to improve estimates of gross primary production
679 of a temperate forest. Plos One, 9(11): doi: 10.1371/journal.pone.0113512.

680 Tcherkez, G., Gauthier, P., Buckley, T.N., Busch, F.A., Barbour, M.M., Bruhn, D.,
681 Heskel, M.A., Gong, X.Y., Crous, K.Y., Griffin, K., Way, D., Turnbull, M.,
682 Adams, M.A., Atkin, O.K., Farquhar, G.D. and Cornic, G., 2017. Leaf day
683 respiration: low CO₂ flux but high significance for metabolism and carbon
684 balance. *New Phytologist*, 216(4): 986-1001.

685 Tcherkez, G., Mahé, A., Gauthier, P., Mauve, C., Gout, E., Bligny, R., Cornic, G. and
686 Hodges, M., 2009. In Folio Respiratory Fluxomics Revealed by ¹³C Isotopic
687 Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the
688 Tricarboxylic Acid “Cycle” in Illuminated Leaves. *Plant Physiology*, 151(2):
689 620-630.

690 Unger, S., Maguas, C., Pereira, J.S., Aires, L.M., David, T.S. and Werner, C., 2009.
691 Partitioning carbon fluxes in a Mediterranean oak forest to disentangle changes
692 in ecosystem sink strength during drought. *Agricultural and Forest Meteorology*,
693 149(6-7): 949-961.

694 Valentini, R., DeAngelis, P., Matteucci, G., Monaco, R., Dore, S. and Mugnozza,
695 G.E.S., 1996. Seasonal net carbon dioxide exchange of a beech forest with the
696 atmosphere. *Global Change Biology*, 2(3): 199-207.

697 van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Kirschbaum, M.U.F. and Suni,
698 T., 2008. Application of an alternative method to derive reliable estimates of
699 nighttime respiration from eddy covariance measurements in moderately
700 complex topography. *Agricultural and Forest Meteorology*, 148(6): 1174-1180.

701 Wang, M., Guan, D.-X., Han, S.-J. and Wu, J.-L., 2010. Comparison of eddy covariance
702 and chamber-based methods for measuring CO₂ flux in a temperate mixed forest.
703 *Tree Physiology*, 30(1): 149-163.

704 Wang, X., Wang, C. and Bond-Lamberty, B., 2017. Quantifying and reducing the
705 differences in forest CO₂-fluxes estimated by eddy covariance, biometric and
706 chamber methods: A global synthesis. *Agricultural and Forest Meteorology*,
707 247: 93-103.

708 Wang, Y.P., Leuning, R., Cleugh, H.A. and Coppin, P.A., 2001. Parameter estimation
709 in surface exchange models using nonlinear inversion: how many parameters
710 can we estimate and which measurements are most useful? *Global Change
711 Biology*, 7(5): 495-510.

712 Wohlfahrt, G., Anfang, C., Bahn, M., Haslwanter, A., Newesely, C., Schmitt, M.,

713 Drosler, M., Pfadenhauer, J. and Cernusca, A., 2005a. Quantifying nighttime
714 ecosystem respiration of a meadow using eddy covariance, chambers and
715 modelling. *Agricultural and Forest Meteorology*, 128(3-4): 141-162.

716 Wohlfahrt, G., Bahn, M., Haslwanter, A., Newesely, C. and Cernusca, A., 2005b.
717 Estimation of daytime ecosystem respiration to determine gross primary
718 production of a mountain meadow. *Agricultural and Forest Meteorology*, 130(1-
719 2): 13-25.

720 Wohlfahrt, G. and Galvagno, M., 2017. Revisiting the choice of the driving temperature
721 for eddy covariance CO₂ flux partitioning. *Agricultural and Forest Meteorology*,
722 237: 135-142.

723 Xu, L.K. and Baldocchi, D.D., 2004. Seasonal variation in carbon dioxide exchange
724 over a Mediterranean annual grassland in California. *Agricultural and Forest
725 Meteorology*, 123(1-2): 79-96.

726 Yang, B., Pallardy, S.G., Meyers, T.P., Gu, L.-H., Hanson, P.J., Wullschleger, S.D.,
727 Heuer, M., Hosman, K.P., Riggs, J.S. and Sluss, D.W., 2010. Environmental
728 controls on water use efficiency during severe drought in an Ozark Forest in
729 Missouri, USA. *Global Change Biology*, 16(8): 2252-2271.

730 Young, F.J., Radatz, C.A. and Marshall, C.A., 2001. Soil Survey of Boone County,
731 Missouri. United States Department of Agriculture, Natural Resources
732 Conservation Service.

734 **Figure legends**

735 Fig. 1 The difference between NEE_{night} and $R_{below,night}$ at low windspeed during the (a)
736 growing and (b) non-growing season. NEE_{night} is the nighttime NEE; $R_{below,night}$ is the
737 nighttime soil respiration; NEE_{night} and $R_{below,night}$ are half hourly data, and the
738 difference between NEE_{night} and $R_{below,night}$ is the average within a bin of windspeed.

739 Fig. 2 Seasonal variability of NEE. NEE is daily total.

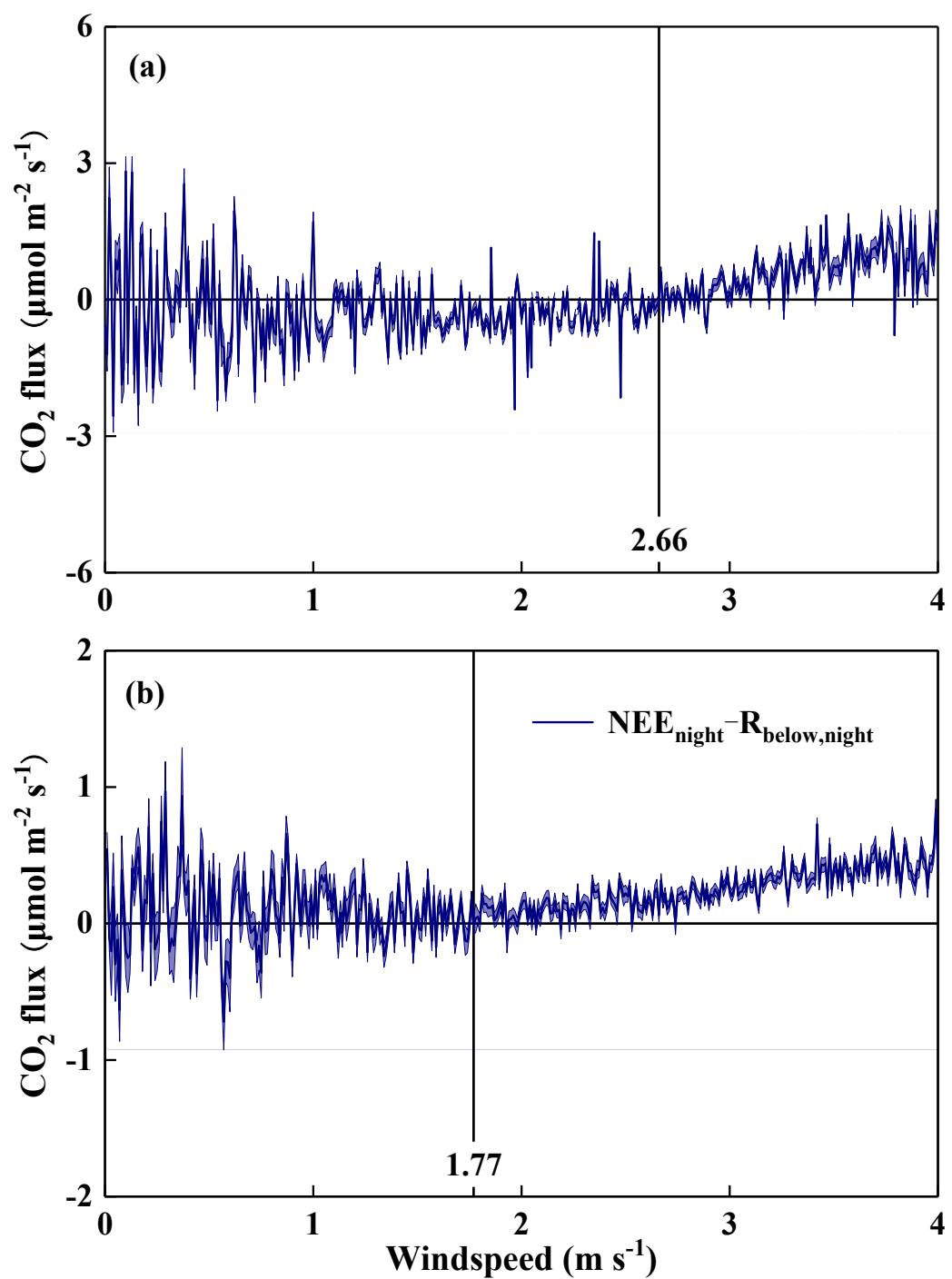
740 Fig. 3 Seasonal variability of above- (R_{above}) and belowground respiration (R_{below}).
741 R_{above} and R_{below} are daily total. $R_{above-DNS}$: estimated aboveground respiration using
742 daytime NEE and soil respiration (DNS) method; $R_{above-NNS}$: estimated aboveground
743 respiration using nighttime NEE and soil respiration (NNS) method; R_{below} :
744 belowground respiration.

745 Fig. 4 Annual above- (R_{above}) and belowground respiration (R_{below}) from 2006 to 2015.
746 $R_{above-DNS}$: estimated aboveground respiration using daytime NEE and soil respiration
747 (DNS) method; $R_{above-NNS}$: estimated aboveground respiration using nighttime NEE and
748 soil respiration (NNS) method; R_{below} : belowground respiration.

749 Fig. 5 Seasonal variability of gross primary production (GPP). GPP is daily total.
750 GPP_{DNS} : estimated gross primary production using daytime NEE and soil respiration
751 (DNS) method; GPP_{NNS} : estimated gross primary production using nighttime NEE and
752 soil respiration (NNS) method.

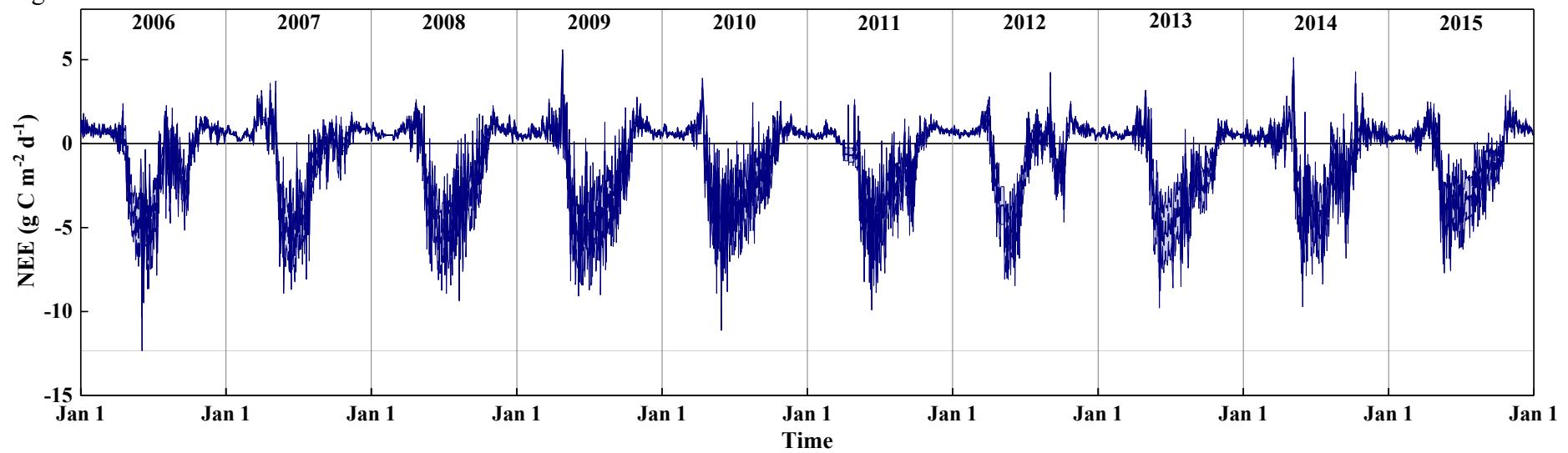
753 Fig. 6 Annual gross primary production (GPP) from 2006 to 2015. GPP_{DNS} : estimated
754 gross primary production using daytime NEE and soil respiration (DNS) method;
755 GPP_{NNS} : estimated gross primary production using nighttime NEE and soil respiration
756 (NNS) method.

757 Fig. 7 Relationships of aboveground respiration (R_{above}) with air temperature, and
758 belowground respiration (R_{below}) with soil temperature. R_{above} and R_{below} are half hourly
759 data. R_{above} : estimated aboveground respiration using daytime NEE and soil respiration
760 (DNS) method; R_{below} : belowground respiration.


761 Fig. 8 Relationships of half hourly ecosystem respiration (R_{eco}) with air and soil
762 temperature. R_{eco} : estimated ecosystem respiration using daytime NEE and soil

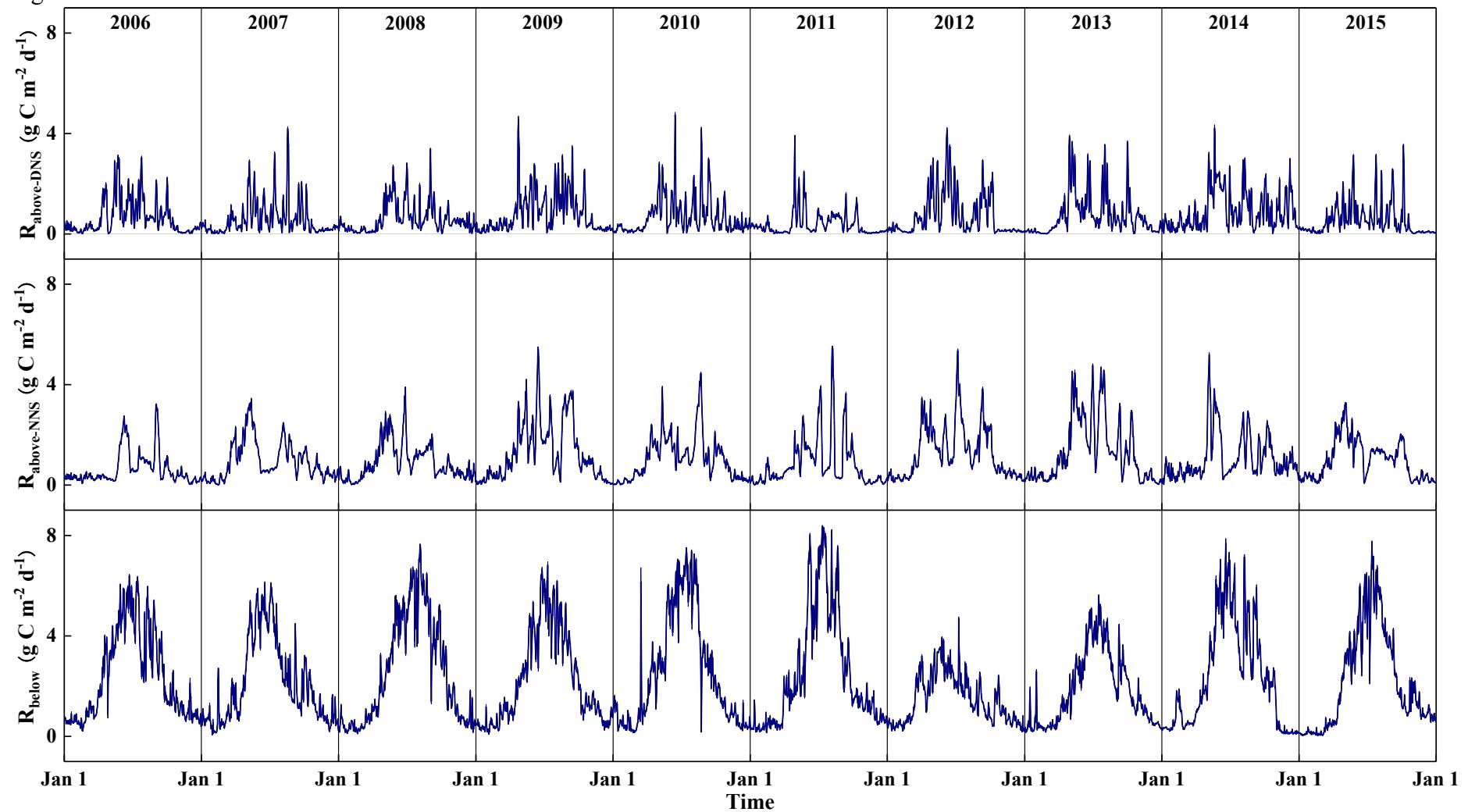
763 respiration (DNS) method; R_{aeco} : air temperature sensitivity of ecosystem respiration;
764 R_{seco} : soil temperature sensitivity of ecosystem respiration.

765 Fig. 9 Seasonal cycles of reference respiration (R_{ref}) inferred from both daytime and
766 nighttime data. R_{ref} is monthly average. $R_{ref,day}$: estimated reference respiration by
767 daytime data; $R_{ref,night}$: estimated reference respiration by nighttime data.


768 Fig. 10 Relative biases in estimates of gross primary production (GPP) and
769 aboveground respiration (R_{above}). $R_{above-DNS}$ and GPP_{DNS} : estimated aboveground
770 respiration and gross primary production using daytime NEE and soil respiration (DNS)
771 method; $R_{above-NNS}$ and GPP_{NNS} : estimated aboveground respiration and gross primary
772 production using nighttime NEE and soil respiration (NNS) method.

773 Fig. 1

774


775 Fig. 2

776

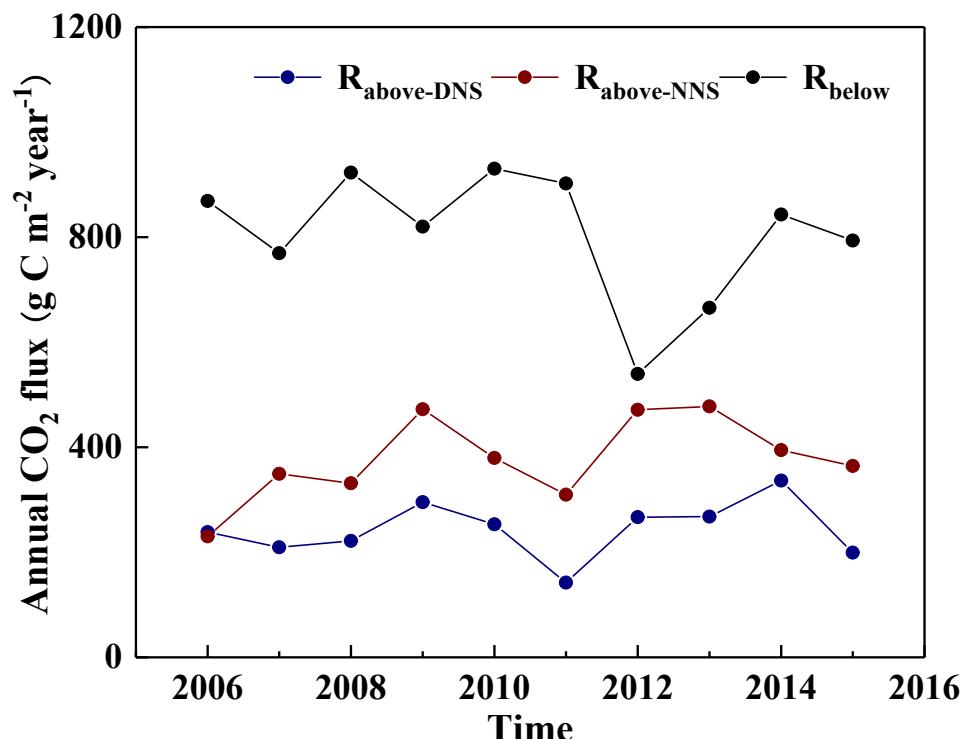
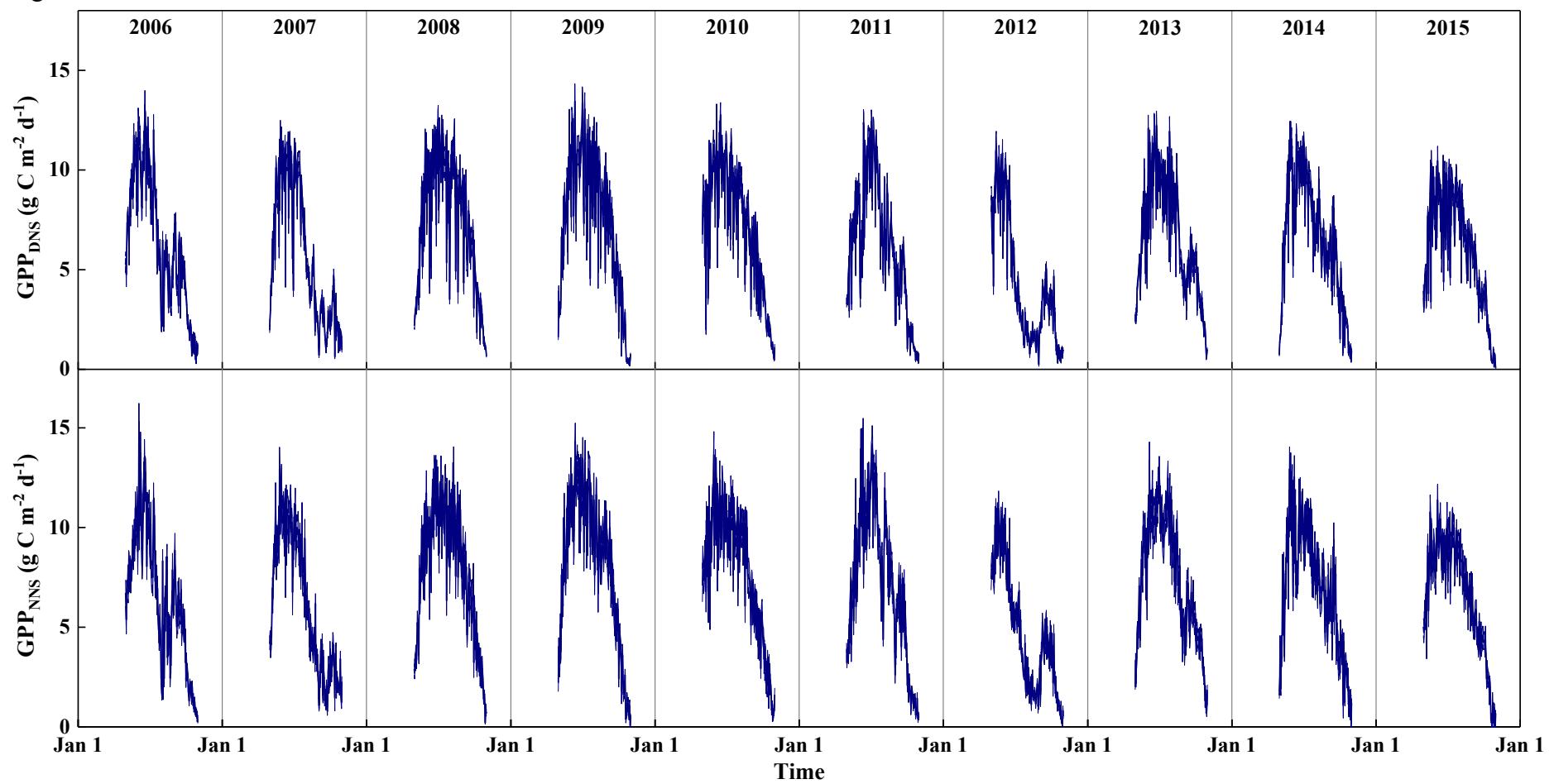
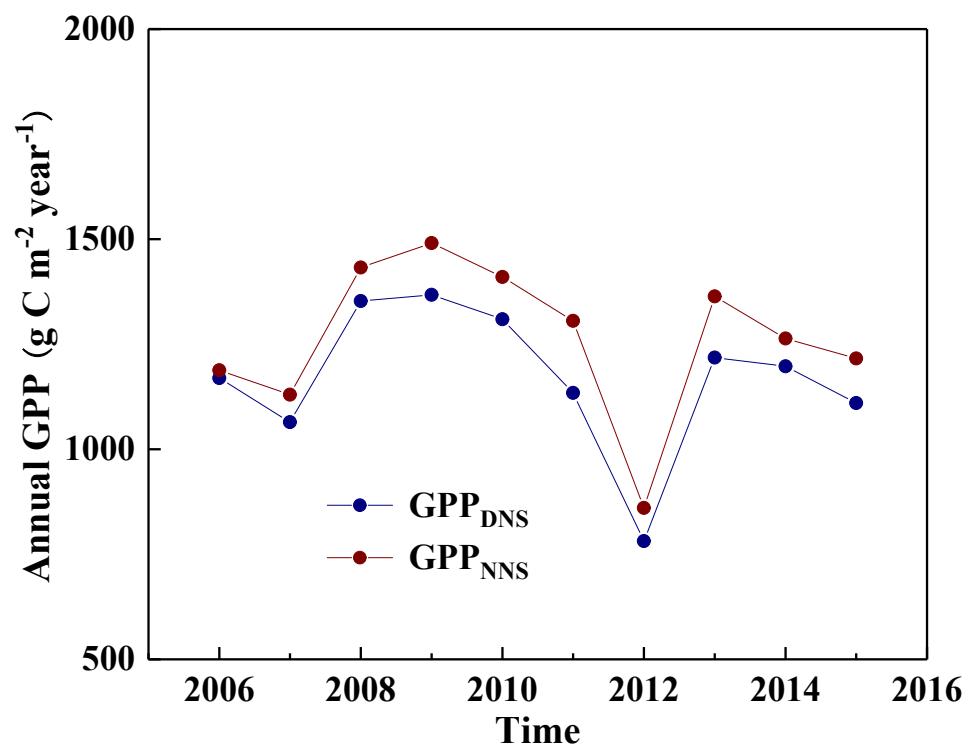

777

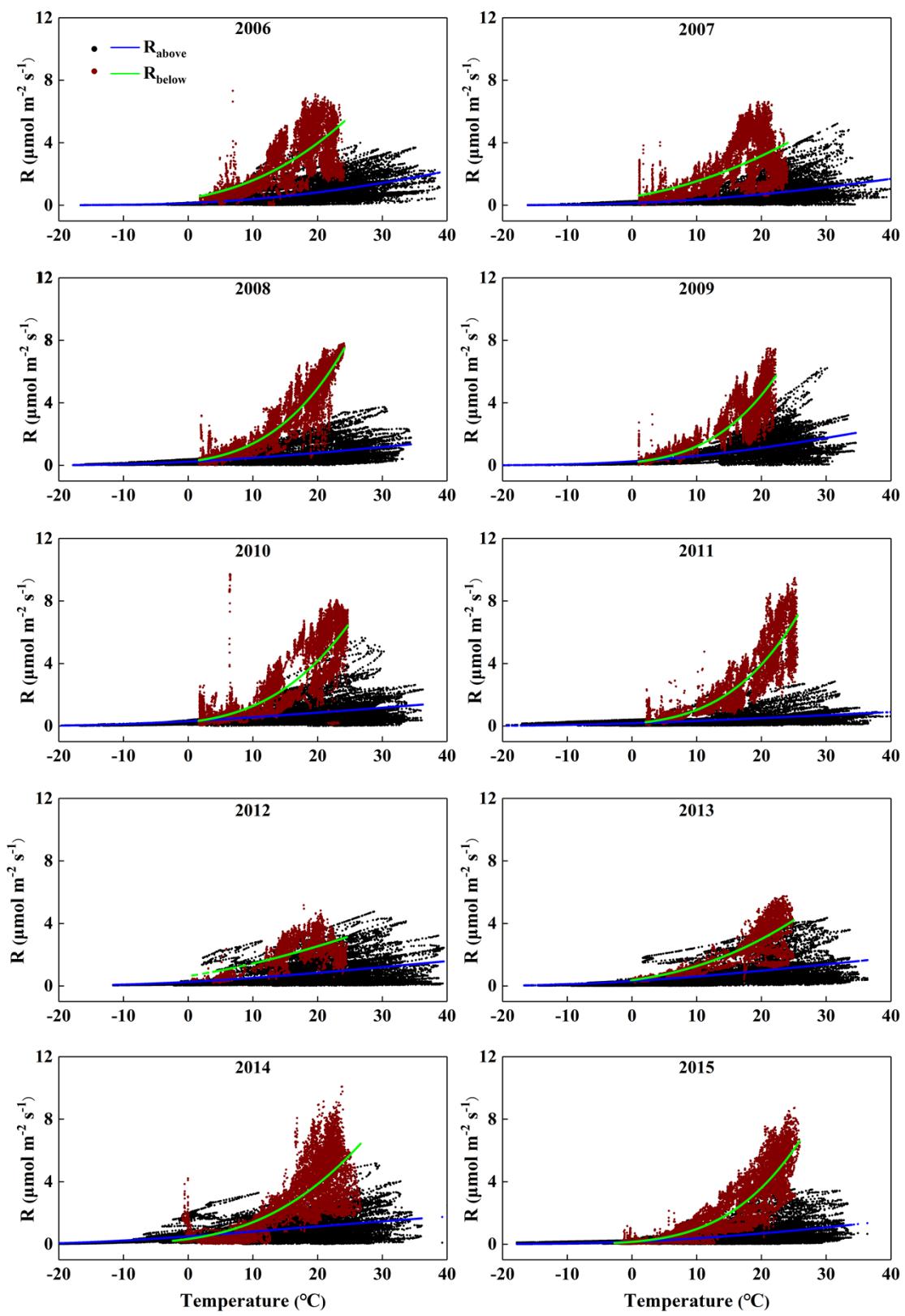
Fig. 3


778

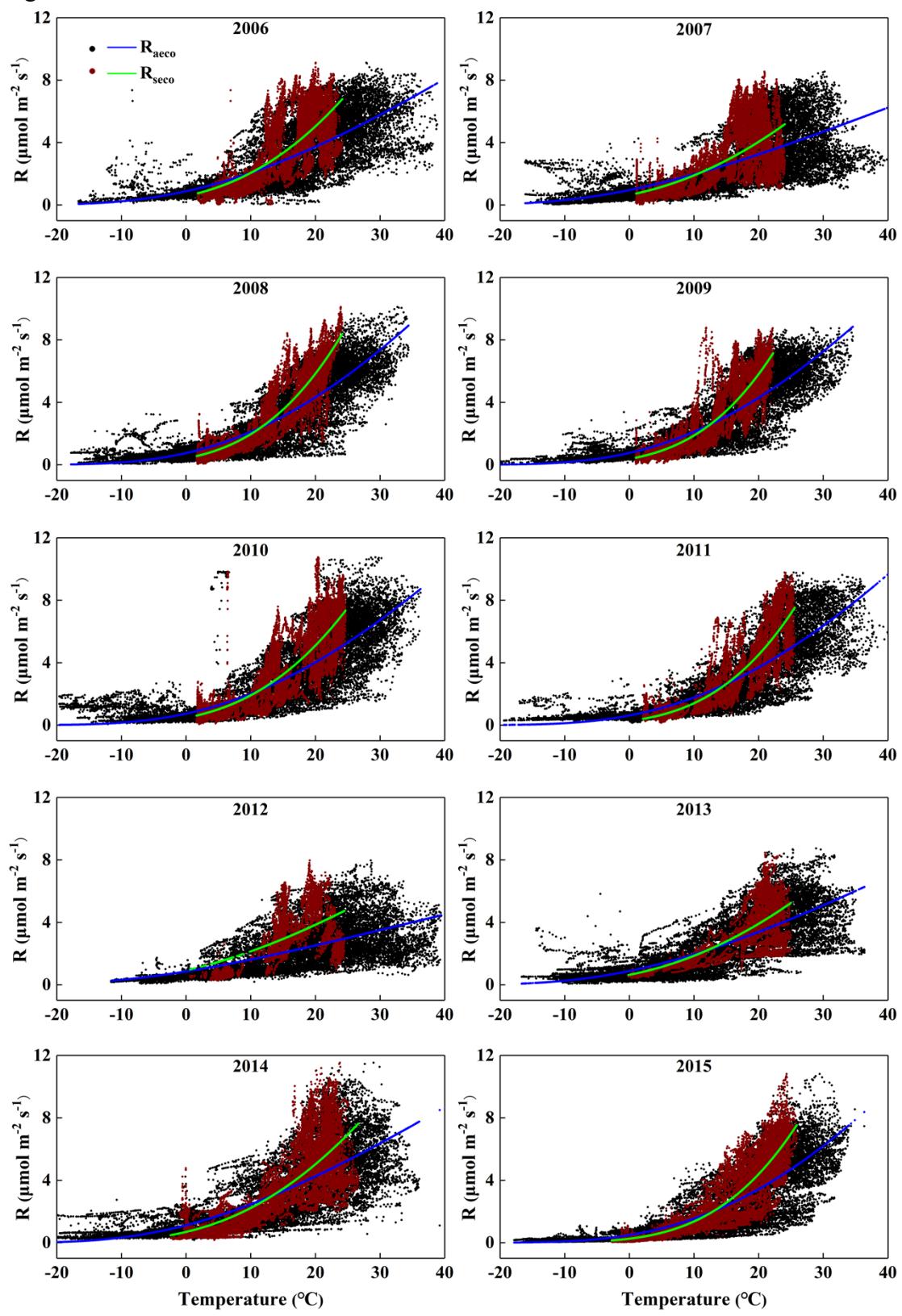
779 Fig. 4


780

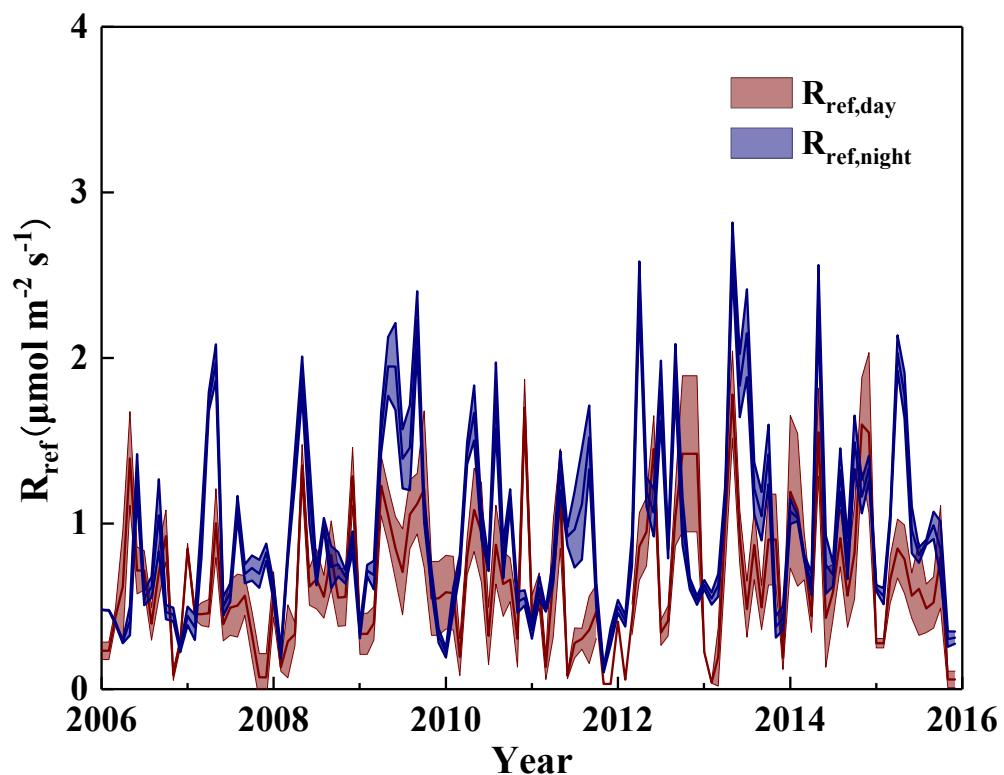
781 Fig. 5


782

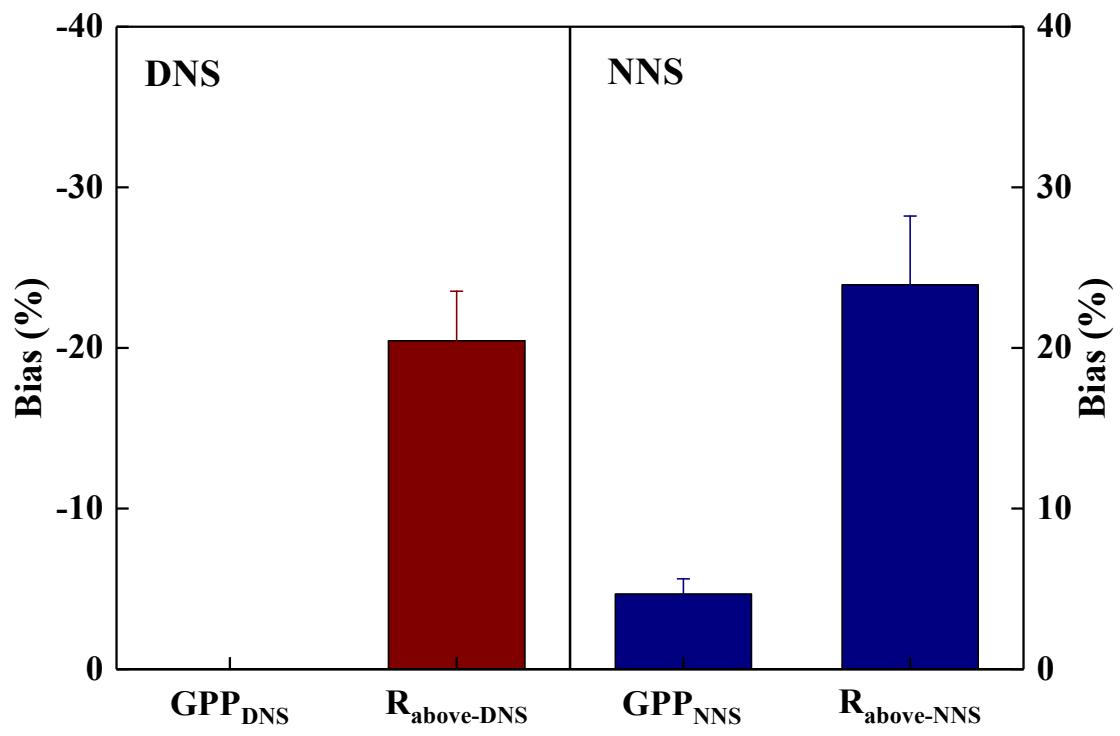
783 Fig. 6


784

785 Fig. 7


786
787

788 Fig. 8


789
790

791 Fig. 9

792

793 Fig. 10

795 Table 1

796 Estimated above- (R_{above}) and belowground respiration (R_{below}), and GPP of growing season, non-growing season, and whole year from 2006 to
797 2015.

	Whole year			Growing season				Non-growing season			
	$R_{\text{above-DNS}}$	$R_{\text{above-NNS}}$	R_{below}	$R_{\text{above-DNS}}$	$R_{\text{above-NNS}}$	R_{below}	GPP_{DNS}	GPP_{NNS}	$R_{\text{above-DNS}}$	$R_{\text{above-NNS}}$	R_{below}
2006	0.65±0.04	0.63±0.03	2.38±0.09	1.00±0.05	0.97±0.05	3.65±0.11	6.36±0.24	6.46±0.25	0.30±0.03	0.29±0.01	1.09±0.06
2007	0.57±0.03	0.96±0.04	2.11±0.09	0.89±0.06	1.25±0.06	3.29±0.11	5.79±0.25	6.14±0.25	0.25±0.02	0.66±0.05	0.91±0.04
2008	0.61±0.03	0.91±0.04	2.52±0.11	0.92±0.05	1.28±0.05	4.27±0.11	7.35±0.23	7.79±0.24	0.28±0.02	0.53±0.03	0.76±0.04
2009	0.81±0.04	1.29±0.06	2.25±0.09	1.21±0.05	2.02±0.08	3.64±0.11	7.43±0.26	8.10±0.27	0.40±0.05	0.56±0.04	0.83±0.04
2010	0.69±0.04	1.04±0.05	2.55±0.11	1.04±0.06	1.55±0.06	4.11±0.14	7.12±0.23	7.66±0.23	0.35±0.02	0.52±0.04	0.97±0.06
2011	0.39±0.02	0.85±0.05	2.47±0.12	0.56±0.03	1.38±0.08	4.07±0.16	6.16±0.24	7.10±0.27	0.22±0.03	0.31±0.02	0.85±0.04
2012	0.73±0.04	1.29±0.05	1.47±0.05	1.11±0.07	1.76±0.07	1.96±0.07	4.25±0.23	4.68±0.22	0.34±0.03	0.81±0.06	0.99±0.06
2013	0.73±0.04	1.31±0.06	1.82±0.07	1.12±0.06	2.17±0.09	2.94±0.09	6.62±0.21	7.41±0.23	0.34±0.04	0.43±0.03	0.69±0.03
2014	0.92±0.04	1.08±0.05	2.31±0.11	1.24±0.06	1.56±0.08	3.98±0.12	6.51±0.23	6.87±0.22	0.59±0.04	0.59±0.02	0.61±0.04
2015	0.55±0.03	1.00±0.04	2.17±0.10	0.80±0.05	1.34±0.05	3.65±0.12	6.03±0.20	6.61±0.21	0.29±0.03	0.66±0.05	0.67±0.05
Average	0.67±0.04	1.04±0.05	2.21±0.09	0.99±0.06	1.53±0.07	3.55±0.11	6.36±0.23	6.88±0.24	0.34±0.03	0.54±0.04	0.84±0.05

798 $R_{\text{above-DNS}}$ (g C m⁻² d⁻¹) and GPP_{DNS} (g C m⁻² d⁻¹): estimated aboveground respiration and GPP using daytime NEE and soil respiration (DNS)
799 method; $R_{\text{above-NNS}}$ (g C m⁻² d⁻¹) and GPP_{NNS} (g C m⁻² d⁻¹): estimated aboveground respiration and GPP using nighttime daytime NEE and soil
800 respiration (NNS) method; R_{below} (g C m⁻² d⁻¹): soil respiration.

801 Table 2
 802 Response of aboveground respiration (R_{above}) to air temperature, and belowground
 803 respiration (R_{below}) to soil temperature.

		DNS method		NNS method		Measured value	
		E_{θ}	R^2	E_{θ}	R^2	E_{θ}	R^2
2006	R_{above}	278±3.37	0.415	238±3.20	0.348	R_{below}	338±2.48
2007	R_{above}	251±4.31	0.303	162±2.24	0.371	R_{below}	268±3.21
2008	R_{above}	191±3.06	0.304	155±2.12	0.370	R_{below}	467±2.07
2009	R_{above}	227±3.26	0.358	219±2.64	0.451	R_{below}	484±2.49
2010	R_{above}	158±3.28	0.224	189±2.33	0.461	R_{below}	436±3.14
2011	R_{above}	162±3.99	0.157	189±3.68	0.267	R_{below}	496±3.13
2012	R_{above}	181±3.81	0.193	200±2.35	0.414	R_{below}	212±3.46
2013	R_{above}	176±3.25	0.257	207±2.56	0.447	R_{below}	317±4.72
2014	R_{above}	126±2.32	0.231	138±2.30	0.277	R_{below}	372±3.74
2015	R_{above}	224±4.47	0.230	161±2.37	0.346	R_{below}	486±3.44
Average	R_{above}	197±14.8A		186±9.95a		R_{below}	388±32.0Bb

804 Different uppercase or lowercase letters indicate significant differences between
 805 temperature sensitivity of R_{above} , R_{below} . DNS method: daytime NEE and soil respiration
 806 method; NNS method: nighttime NEE and soil respiration method; R_{above} ($\mu\text{mol m}^{-2} \text{s}^{-1}$):
 807 aboveground respiration; R_{below} ($\mu\text{mol m}^{-2} \text{s}^{-1}$): belowground respiration; R_{ref} ($\mu\text{mol m}^{-2} \text{s}^{-1}$) :
 808 the basal respiration at reference temperature (T_{ref}) of 15°C; E_{θ} (K):
 809 temperature sensitivity.

810 Table 3

811 Response of ecosystem respiration (R_{eco}) to air and soil temperature.

	DNS method				NNS method			
	R_{aeco}		R_{seco}		R_{aeco}		R_{seco}	
	E_{θ}	R^2	E_{θ}	R^2	E_{θ}	R^2	E_{θ}	R^2
2006	220±1.78	0.599	332±2.40	0.656	212±1.80	0.570	341±2.30	0.685
2007	186±2.02	0.500	281±2.92	0.509	169±1.63	0.547	244±2.41	0.519
2008	267±1.68	0.758	404±1.87	0.858	246±1.50	0.768	371±1.75	0.845
2009	264±1.68	0.738	418±2.16	0.821	254±1.69	0.725	406±2.10	0.821
2010	259±1.99	0.686	364±2.45	0.725	261±1.79	0.734	363±2.23	0.761
2011	273±1.99	0.719	433±2.72	0.806	260±2.11	0.678	423±2.92	0.775
2012	165±1.90	0.426	217±4.15	0.419	175±1.53	0.561	203±2.99	0.541
2013	205±1.74	0.616	276±4.49	0.576	214±1.77	0.633	312±4.97	0.606
2014	203±1.89	0.582	302±2.82	0.656	202±1.76	0.619	297±2.57	0.690
2015	297±2.40	0.652	434±2.70	0.807	261±1.93	0.687	378±2.09	0.830
Average	234±13.8A		346±24.1B		225±11.3a		334±22.2b	

812 Different uppercase or lowercase letters indicate significant differences between air and
 813 soil temperature sensitivity of R_{eco} . DNS method: daytime NEE and soil respiration
 814 method; NNS method: nighttime NEE and soil respiration method; R_{aeco} : air
 815 temperature sensitivity of ecosystem respiration; R_{seco} : soil temperature sensitivity of
 816 ecosystem respiration; R_{ref} ($\mu\text{mol m}^{-2} \text{s}^{-1}$) : the basal respiration at reference temperature
 817 (T_{ref}) of 15°C; E_{θ} (K): temperature sensitivity.