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Abstract— Heterogeneous unified memory management 

between a CPU and a GPU is a major challenge in GPU 

computing. Recently, unified memory (UM) has been supported 

by software and hardware components on AMD computing 

platforms. The support could simplify the complexities of memory 

management. In this paper, we attempt to have a better 

understanding of UM by evaluating the performance of UM 

programs on an AMD MI100 GPU. More specifically, we evaluate 

data migration using UM against other data transfer techniques 

for the overall performance of an application, assess the impacts 

of three commonly used optimization techniques on the kernel 

execution time of a vector add sample, and compare the 

performance and productivity of selected benchmarks with and 

without UM. The performance overhead associated with UM is not 

trivial, but it can improve programming productivity by reducing 

lines of code for scientific applications. We aim to present early 

results and feedback on the UM performance to the vendor. 
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I. INTRODUCTION 

Unified memory (UM) allows modern graphics processing 
units (GPUs) and central processing units (CPUs) to share 
heterogeneous unified memory address space by GPU runtime 
support [ 1 ]. In a conventional heterogeneous programming 
model, developers need to explicitly copy data between a CPU 
and a GPU before and after executing a task on a GPU [2, 3, 4]. 
Compared to the explicit copy-then-execute approach, the 
runtime, operating system, and underlying hardware 
automatically migrate data to destinations in UM, relieving a 
developer from managing data migration between a host and a 
device explicitly for complex applications. 

However, conventional programming models are still widely 
used because UM sacrifices performance for flexibility [5, 6, 7, 
8, 9]. UM incurs performance overhead because a GPU runtime 
must trace memory accesses, determine the granularity of data 
migration, and handle page faults, etc. To mitigate performance 
issues of UM, the GPU computing communities have mainly 
focused on developing optimization techniques with the CUDA 
programming model on NVIDIA GPUs [10, 11, 12, 13]. 

HIP is a C++ runtime application programming interface 
(API) and kernel language that allows developers to write 
portable applications for AMD GPUs from a single source. HIP 
now supports and automatically manages heterogeneous 
memory management (HMM) allocation on AMD GPUs [14]. 
Previous studies evaluated the performance of UM applications 
and benchmarks on NVIDIA GPUs [5-9]. In this work, we 
modify existing benchmarks for UM support with HIP and 
evaluate their performance on a recent AMD discrete GPU. 

Rather than proposing new optimization techniques for UM, our 
experimental results aim to provide timely feedback on the 
performance of UM benchmarks in HIP on an AMD GPU and 
invite discussions about performance optimization techniques 
for the software stack and hardware devices on AMD computing 
platforms. 

More specifically, we evaluate the data migration methods, 
including UM, pageable memory, pinned memory, and zero-
copy, and show their impacts upon the performance of the 
matrix multiplication and vector addition. Then, we evaluate the 
effectiveness of the UM optimization techniques in reducing the 
kernel execution time with a performance profiler. Finally, we 
evaluate the performance of eight benchmarks in the high-
performance computing and machine learning domains with and 
without UM. Despite the performance overhead incurred by 
UM, we argue that UM can improve programming productivity 
by reducing lines of code of scientific applications. 

We have described the motivation and scope for our work. 
The rest of the paper is organized as follows. Section II 
introduces the UM support, the GPU execution model, and the 
AMD GPU architecture. Section III describes our performance 
evaluation of programs and benchmarks with UM support on the 
target GPU. Section IV summarizes related work, and Section V 
concludes the paper. 

II. BACKGROUND 

A. Unified memory support in ROCm 

AMD ROCm is a software stack composed of development 
tools, libraries, compiler toolchains, programming models, and 
drivers/runtime [15]. ROCm has been enhancing HIP with UM 
support. UM maps and migrates data seamlessly without 
developers’ explicitly copying data between different memory 
allocations. To enable the feature, explicitly call the 
“hipMallocManaged()” function is needed in a HIP program. 
“hipMemAdvise()”, “hipMemPrefetchAsync()” and related 
application programming interfaces (APIs) might aid the 
runtime with memory usage hints for performance optimization. 

UM is only supported on recent Linux kernels. Before 
making the managed memory API call in a HIP program, it is 
recommended to either perform a capability check by querying 
the feature of a device or look for the HMM-specific message in 
the kernel log.  

UM only works on recent AMD GPUs, including Vega10 
and MI100. Older GPUs such as Fiji and Polaris are not 
supported. There are two flavors of the support: XNACK-
enabled and XNACK-disabled. In the XNACK-enabled mode, 
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a GPU can handle retry of a memory access after page-faults, 
which enables mapping and migrating data on demand, as well 
as memory overcommitment. In the XNACK-disabled mode, all 
memory must be resident and mapped in GPU page tables when 
the GPU is executing application code. The XNACK-enabled 
mode only has experimental support. Not all the math libraries 
included in ROCm support the XNACK-enabled mode on 
current hardware. A mode can be chosen at boot-time, and the 
default is XNACK-disabled. Due to the uncertainties of the 
XNACK-enabled mode, our evaluation is limited to the 
XNACK-disabled mode. We would like to investigate the 
XNACK-enabled mode in our future work. 

B. GPU execution model and architecture 

A GPU program generally consists of two integral parts: a 
host program and a device program or a GPU kernel. A host 
program runs on a host processor while a kernel runs on a GPU. 
A kernel, which usually represents a computationally intensive 
task, is executed by multiple work-items (WIs) and these work-
items are grouped into work-groups (WGs). The number of 
WGs and the number of WIs per WG are specified 
programmatically. These WGs are executed by an array of 
Compute Units (CUs) that form the core of a GPU. An AMD 
GPU has multiple CUs and each CU is a processor with program 
counters, scalar registers, vector registers, arithmetic logical 
units (ALU), etc. There is a level-one (L1) cache for each CU 
and all CUs share a L2 cache via an interconnect network. 

The 7-nm MI100 is a discrete GPU with 120 CUs. As shown 
in the specification [16], each CU contains a scalar ALU, 104 
scalar registers, and four single-instruction-multiple-data 
(SIMD) units. Each SIMD unit has 64 vector registers and 16 
ALUs. The maximum clock frequency is 1502 MHz and the 
maximum number of WIs in a WG is 1024. The sizes of the L1 
and L2 caches are 16 KB and 8 MB, respectively. The total 
number of stream processors are 7680 (120 × 4 × 16). 

III. EVALUATION 

We will describe our experiments on the MI100 GPU in the 
following order. Firstly, transparent data migration with UM is 
compared against other data transfer techniques for the overall 
performance of the matrix multiply and vector add applications. 
Secondly, we examine the impacts of three commonly used 
optimization techniques on the kernel execution time of a vector 
add example. Lastly, we compare the performance and 
programming productivity of selected benchmarks with and 
without UM.  

A. Impacts of data migration techniques on the application 

performance 

As mentioned before, explicit data migration is commonly 
used in many GPU applications. The UM support in CUDA or 
HIP was introduced after explicit data migration had been 
widely adopted by the GPU research community. In addition, 
UM’s performance issues may discourage people from porting 
a program written with the explicit-copy-then-execution 
approaches. Despite these factors, we will evaluate the impacts 
of data migration approaches [17, 18] upon the performance of 
an application. Starting with the NVIDIA UM performance 
sample that contains a matrix multiplication kernel [19], we port 
the sample to HIP with HIPIFY [20], and add another sample 
with a vector add kernel. We build all HIP programs in our work 
with ROCm version 4.5.2. 

Figures 1 and 2 show the overall performance reported as 
bandwidth (MB/s) across various memory sizes of the matrix 
multiplication and vector addition applications, respectively. 
The overall performance is derived from the sum of data transfer 
time between a host and a device, device execution time, and 
host access time. “UM-hint” and “UM” indicate unified memory 
with and without memory usage hints, respectively. “ZeroCopy” 
uses zero-copy buffers for data migration. “PageableCopy” 
copies data from pageable host memory to device memory 
whereas “PageLockedCopy” transfers data from page-locked 

 

Fig 1. Overall performance of the matrix multiply application with respect 

to data migration methods on the MI100 GPU. The memory size ranges 

from 4 KB to 16384 KB.  
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Fig 2. Overall performance of the vector add application with respect to data 

migration methods on the MI100 GPU. The memory size ranges from 4 KB 

to 16384 KB. 
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host memory to device memory. The suffix “Async” indicates 
that data transfers are performed asynchronously on a host. The 
bandwidth of “UM-hint” is approximately 1.2X to 7.5X slower 
than that of “UM” across the matrix sizes for the matrix 
multiplication. The bandwidth of “UM-hint” is also 
approximately 3.0X to 8.5X slower than that of “UM” across the 
vector sizes for the vector add. On the other hand, when the 
memory size ranges from 4 KB to 64 KB, the performance of 
“UM” is approximately 1.07X to 2.8X higher than that of 
“PageLockedCopyAsync” for the matrix multiply. It is also 
approximately 1.6X to 3.1X higher than that of 
“PageLockedCopyAsync” for the vector add. The performance 
of “UM” gradually decreases from the peak performance at the 
memory size of 64 KB for the matrix multiplication. For the 
vector add, the peak performance of “UM” is at 1024 KB. The 
experimental results show that the performance of the 
applications using UM is closely related to data transfer size and 
memory accesses of a kernel. Compared to “UM”, prefetching 
memory as a memory usage hint leads to significant data 
transfers between the host and device. 

B.  Impacts of UM optimizations on the kernel performance 

Managed memory may not be physically allocated when 
calling the API function to allocate memory that will be 
automatically managed by HIP; it may only be populated on 
access or prefetching. At the runtime level, pages and page table 
entries may not be created until they are accessed by a device. 
Pages could migrate to any processor’s memory at any time as 
the runtime may not automatically copy all pages needed by a 
kernel to a GPU before running the kernel. While the kernel 
launch may not incur any migration overhead, accessing any 
absent pages causes a GPU to stall the execution of the accessing 
threads, and wait for the migrating pages to reach the device 
before resuming the threads. 

Empirical studies showed that three optimization techniques 
for UM are effective in improving the kernel performance on 
NVIDIA Pascal and later GPUs [21]: 

1. Move data initialization to a GPU into another kernel. 

2. Run a kernel many times and look at the average and 
minimum execution time. 

3. Prefetch data to GPU memory before running a kernel. 

We use a vector add kernel (i.e., y = x + y) to measure the 
impacts of the three optimization techniques on the kernel 
execution time on the MI100 GPU. Without UM, the vector 
arrays are initialized on the host, copied to the GPU for 
execution, and finally the results are copied back to verify their 
correctness. We profile the programs with the ROCm profiler, a 
command-line interface for AMD GPU profiling libraries. We 
run the kernel with pageable memory copy (non-UM) and 
unified memory (UM) for 100 iterations. 

Figure 3 shows that the decrease of the kernel execution time 
ranges from approximately 1.1X to 2.8X with respect to the 
vector length for the three optimization techniques. However, 
the execution time is still approximately 1.4X to 74.8X longer 
than that of the kernel that takes the copy-then-execute 
approach. The worst kernel performance occurs when the vector 
length is 4096K. The results indicate that the extra cost of data 

migration, which is included in the kernel execution time, can 
only be partially mitigated with these optimization techniques. 

To have a better understanding of the performance gaps, we 
profile the kernels with the collected metrics and their 
descriptions listed in Table I.  

Figure 4 shows the fetch and write sizes over 100 iterations 
for the two data migration methods when the vector length is 
4096K. The fetch sizes are on average 2.04X and 2.34X larger 
than the write sizes for UM and non-UM, respectively. While 
the write size is fixed at 16384 KB -for UM, it fluctuates slightly 
between 14037 KB and 14068 KB for non-UM. This implies 

 

Fig 3. Performance speedup achieved by the three optimization methods on 

the MI100 GPU. The vector length ranges from from 1K to 4096K. The 

kernel execution time of the baseline (UM) is normalized to 1. 
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Fig 4. Fetch and write sizes over 100 iterations of kernel execution for a 

vector length of 4096K 
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TABLE I.  PERFORMANCE PROFILING METRICS 

Metrics Descriptions 

FetchSize 
The total kilobytes fetched from the global memory. This is 

measured with all extra fetches and any cache or memory 

effects are considered. 

WriteSize 

The total kilobytes written to the global memory. This is 

measured with all extra fetches and any cache or memory 
effects are considered. 

MemUnit

Stalled 
The percentage of GPU time the memory unit is stalled. 

L2Cache

Hit 

The percentage of fetch, write, atomic, and other 

instructions that hit the data in L2 cache. 

 



that global memory writes are partly cached. The fetch size for 
UM is on average 2.1% larger than that for non-UM; the fetch 
sizes are not constant for both UM and non-UM over 100 
iterations. The fetch sizes are on average 0.23% and 2.3% higher 
than the total sizes of the two vectors in bytes for non-UM and 
UM, respectively. The results suggest that UM incurs more data 
migration between a host and a device. 

Figure 5 shows the percentages of memory unit stalled and 
L2 cache hits. The cache hit rate levels off at around 33% for 
non-UM, but it is almost zero for UM. Hence, the L2 cache is 
hardly utilized to improve data locality for UM. The stall rate for 
UM fluctuates between 10% and 20% while the rate for non-UM 
fluctuates between 8% and 10%. The stall rate for UM is on 
average 3.6% higher than that for non-UM due to the larger 
number of memory fetches and writes.  

Figure 6 shows the percentages of memory unit stalled with 
respect to the vector length when the kernel is executed for 100 
iterations in the UM mode. When the vector length ranges from 
1K to 64K, the stall rate is almost zero over 100 iterations. 
Further increasing the vector length leads to fluctuating rates 

mostly between 10% and 25%. The result shows that the stall 
rate is highly sensitive to the increase of memory size in UM. 

Figure 7 shows the percentages of L2 cache hits with respect 
to the vector length when the kernel is executed for 100 
iterations in the UM mode. After the hit rates peak in the 
beginning for the shorter vector lengths, they appear fluctuating 
between 0% to 4%. For larger vector lengths, the hit rates are 
less than 1%. The result shows that the hit rate is not constant 
across the iteration range. It is less sensitive to the increase of 
memory size in UM. 

C. Performance and Productivity of UM Benchmarks 

We choose eight benchmarks from different domains for 
evaluating the UM performance. “backprop”, “hotspot”, and 
“pathfinder” are grid applications in the Rodinia benchmark 
suite [ 22 ]. “winograd” and “mnist” are machine learning 
benchmarks for Winograd convolution [23] and convolution 
neural network [24], respectively. “deredundancy” is an award-
winning bioinformatics application for gene de-redundancy 
[25]. “s3d” is a scientific application for combustion simulation 
from the SHOC benchmark suite [ 26 ]. “gpp” is a proxy 
application for the generalized plasmon-pole model from 
BerkeleyGW, a many-body perturbation theory code [27]. We 
write these benchmarks in HIP and convert the copy-then-
execute APIs to the UM APIs. Specifically, the host and device 
pointers involved in data transfers between the two are replaced 
with the “hipMallocManaged()” function calls. All memory 
copy APIs (i.e., “hipMemcpy()”) explicitly called in a program 
are not needed in the UM model. This may involve rewriting 
codes around the API calls in some benchmarks to implement 
the equivalent functionalities. Hence, certain data structure used 
on the host side may be modified for the UM version. For 
example, a 2D host array may be flattened into a 1D array before 
it is allocated with UM. This is because the kernel still expects 
a pointer to a 1D array. 

To evaluate the performance of benchmarks with or without 
UM fairly, we propose to measure the time of executing both 
host and device codes rather than the time of executing device 
codes alone. Hence, for the HIP benchmarks without UM, our 

 

Fig 5. Memory stall rates and L2 cache hits rate over 100 iterations of kernel 

execution for a vector length of 4096K 
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Fig 6. Memory stall rates with respect to the vector length when the kernel 

is executed for 100 iterations in the UM mode 
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Fig 7. L2 cache hit rates with respect to the vector length when the kernel is 

executed for 100 iterations in the UM mode 
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timing measurement starts from allocation and initialization of 
data structures in host and device memory spaces, data transfers 
from a host to a device, execution of kernel(s) on a device, data 
transfers from a device to a host, and stops after deallocation of 
data structures in host and device memory spaces. For the UM 
benchmarks, our timing measurement starts from allocation and 
initialization of data structures in UM, execution of kernel(s), 
and stops after deallocation of data structures in UM. 

Table II lists the execution time in seconds of the 
benchmarks with or without UM and the comparison of their 
execution time. The result of the “gpp” benchmark with UM is 
not available because it causes the benchmark to hang. Among 
the other benchmarks, the performance of “winograd” is worst 
with UM. We try to have a better understanding of the 
significant drop in performance. Looking into “winograd”, we 
find that the performance bottleneck lies in the loop body where 
Winograd convolutions are performed. The amount of CPU and 
GPU workloads are computed in the beginning of each loop 
iteration. For the first seven loop iterations, the workload size is 
zero on a CPU. Then, both host and device will compute their 
parts of Winograd convolution and write their results to a buffer 
allocated with UM concurrently. 

Figure 8 shows the fetch and write sizes over the loop 
iteration range for the Winograd benchmark with and without 
UM. Because the CPU workload increases from zero to the 
maximum over the iteration range, the fetch and write sizes 
decrease generally over the iteration range on the GPU. 
However, there are three spikes in the fetch and write sizes with 
UM. The first spike occurs when the CPU and GPU start co-
executing the Winograd convolution at the 8th iteration, causing 
the runtime to synchronize memory between the host and device 
with excessive amount of data migration. As the CPU workload 
continues to increase, the size of the output from the CPU 
convolution written to the buffer in UM reaches to a point (i.e., 
the second spike) where it triggers significant data migration 
between the host and device again. The last spike, the magnitude 
of which is significantly lower than the previous spikes, 
increases the stall rate of the memory unit from around 50% to 
77%. Additional performance profiling metrics, such as memory 
thrashes, addresses of CPU and GPU page faults, and the 
correlation of memory events with application code, may be 
provided by the ROCm profiler to fully understand the causes of 
the spikes. 

Figure 9 shows the percentages of memory unit stalled and 
L2 cache hits for the Winograd benchmark with and without 
UM. With the increasing amount of CPU workload, the stall rate 
decreases slowly from around 20% to around 7% for the non-
UM implementation. However, the stall rate ranges from 50% 
to 75% for the UM implementation. The hit rate ranges from 
81% to 85% without UM, but it is almost zero with UM. The 
results show that UM is unable to utilize L2 cache for 
performance improvement. 

We argue that lines of code (LOC), which measure the size 
of a computer program by counting the number of lines in the 
text of the program’s source code, can estimate programming 

TABLE II.  EXECUTION TIME IN SECONDS OF THE BENCHMARKS 

Benchmark Non-UM (s) UM (s) Slowdown (%) 

backprop 0.68 0.73 7.3 

deredundancy 100.3 103.6 3.3 

gpp 267 N/A N/A 

hotspot 1.09 1.21 11 

mnist 51 64 25.4 

pathfinder 0.81 0.93 14.8 

s3d 0.118 0.128 8.4 

winograd 1.9 5.9 210 

 

 

Fig 8. Fetch and write sizes of the “winograd” kernel over the loop iteration 
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Fig 9. Memory stall rates and L2 cache hit rates of the “winograd” kernel 

over the loop ieration range 
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TABLE III.  PROGRAMMING STEPS WITH AND WITHOUT UM 

Step Non-UM UM 

1 Allocate host memory 
Allocate unified memory 

2 Allocate device memory  

3 Initialize host memory Initialize unified memory 

4 
Copy data from host memory 
to device memory 

Launch kernel(s) 5 Launch kernel(s) 

6 
Copy data from device 
memory to host memory 

7 Deallocate device memory 
Deallocate unified memory 

8 Deallocate host memory 

 



productivity. UM could achieve better programming 
productivity or simplify the complexities of a program by 
reducing the number of logical steps needed for writing a 
program for heterogeneous computing.  

As shown in Table III, UM eliminates the needs of allocating 
host and device memory separately, and explicit data transfers 
between host and device memory. Hence, the number of logical 
steps decrease from 8 to 4. When there are many host and device 
memory allocations as well as data transfers in a complex 
application, UM could simplify the complexity more 
effectively.  

To evaluate the productivity of UM, we compare LOC of the 
host programs with or without UM and the names of the 
programs in these benchmarks. It should be noted that the 
amount of reduction in LOC with UM is closely related to how 
host and device codes interact in each application. 

Table IV shows that UM can reduce LOC by 3 to 48 
depending on the benchmarks. Although the decrease of three 
lines is trivial for a program, removing nearly 50 lines could 
improve programming productivity and program readability. 

IV. RELATED WORK 

In [5], the authors evaluate the performance impact of 
adopting UM for solving sparse systems of linear equation with 
CUDA 6.0. Their experience is using UM never resulted in more 
than a 25% slowdown over hand-tuned code. The speedup 
achieved by UM ranges from 0.77 to 1.39. Looking closely at 
the problem sizes and execution time, we observe that the UM 
implementation is generally faster than the non-UM 
implementation for small problem sizes. On the other hand, they 
report that UM can simplify the code structure because the CPU 
and GPU can access data stored in managed memory at different 
computing stages of the algorithm. Additionally, UM offers ease 
of programming for object-oriented programming with sharing 
of objects between host and device code. 

In [7], the authors find that for many applications and 
memory access patterns, the performance overheads associated 
with UM are significant at large problem sizes on the NVIDIA 
K40 and Jetson TK1 GPUs, while the simplifications to the 
programming model restrict flexibility for adding future 
optimizations. For their microbenchmarks and the Rodinia 
benchmarks, the difference in code complexity between the UM 
and non-UM version is little, with no more than 10 lines of code 
changing across versions. They conclude that for many GPU 
applications which operate on arrays of data, the introduction of 
UM does not provide a large simplification. While their 

performance trend is consistent with our evaluation, we argue 
that UM can reduce code complexity for complex scientific 
applications. 

In [8], the authors found that the performance improvement 
with UM is 1-3% for the selected tests for heat distribution, but 
most applications saw performance drops or time close to those 
using the standard (non-UM) APIs. Their experiments showed 
that the performance of UM appears to be worse when data 
transfer time relative to kernel computations on a GPU is 
substantial and that more data compared to the standard version 
is transferred in the UM version. However, UM is a mechanism 
that allows people to quickly write programs like standard 
programs written for a CPU. Their results are consistent with the 
increasing fetch and write sizes for larger problem sizes in our 
experiment. However, porting a program written with standard 
APIs to a program with UM requires an understanding of how 
host and device code work in an application. 

In [9], the authors evaluate the performance of a set of UM 
benchmarks over Intel-Volta/PascalPCIe based systems and the 
Power9-Volta-NVLink based system. They find that the 
effectiveness of memory usage hints and prefetching depends on 
the platform, but the overhead of handling page faulting is more 
significant compared to the execution time of the benchmarks 
with explicit data transfers. In their work, they also evaluate the 
performance of these optimization techniques when GPU 
memory is oversubscribed. We argue that improving the 
performance of in-memory execution in UM should be 
addressed first. They also mention the effort in operating system 
of providing mechanisms to mirror a CPU page table on a GPU 
and integrate device memory pages in a system page table. This 
is important because a recent Linux kernel is required for the 
UM support on an AMD GPU. 

In [28], the authors present 32 open-source UM benchmarks 
in CUDA and evaluate their performance on an NVIDIA Pascal 
GPU. They find that across the benchmarks the performance of 
the UM benchmarks is on average 34.2% slower compared with 
the benchmarks without UM due to the cost of page fault 
handling. They apply the three optimization techniques 
summarized in our paper to the UM benchmarks that cause the 
highest slowdown. These techniques are effective in improving 
the performance of the benchmarks in their study. Their results 
are consistent with our findings using a vector add kernel. 
However, we would like to add more benchmarks and 
applications with UM in our future work. 

Besides the extensive performance evaluation of 
benchmarks and applications with CUDA’s UM support on 
NVIDIA GPUs, in-depth analyses and optimizations of the 
implementations of UM through GPGPU simulators are 
described in [10, 11, 12, 13]. Our work aims to provide early 
results and feedback to the vendor from the aspects of 
application development and performance evaluation. 

V. CONCLUSION 

The performance overheads associated with UM on an AMD 
GPU are significant based on our experimental results. Given 
the large amount of work on performance evaluation and 
optimization of UM on NVIDIA Pascal and later GPUs, such 
overheads may be expected for AMD GPUs. While the feature 

TABLE IV.  LINES OF CODE OF THE HOST PROGRAMS IN THE BENCHMARKS 

Benchmark 
Non-UM 

(LOC) 

UM 

(LOC) 

Reduction 

(LOC) 
File of interest 

backprop 100 93 7 main.cu 

deredundancy 239 221 18 main.cu 

gpp 204 156 48 main.cu 

hotspot 147 136 11 hotspot.cu 

mnist 142 139 3 main.cu 

pathfinder 186 180 6 main.cu 

s3d 194 171 23 S3D.cu 

winograd 137 127 10 main.cu 

 



has only been supported with recent AMD software and 
hardware components, there are optimization spaces of reducing 
fetch and write sizes for large memory sizes, improving L2 
cache hit rates and decreasing memory unit stalls, and adding 
more performance metrics related to UM and GPU architectures 
in the ROCm profiler. On the other hand, our benchmark results 
show that UM can improve programming productivity 
effectively for certain scientific applications by reducing lines of 
code. We expect that the performance gap between UM and non-
UM benchmarks will gradually shrink with the maturing 
software and hardware components. 
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