Evaluating Unified Memory Performance in HIP

Zheming Jin
Oak Ridge National Laboratory
jinz@ornl.gov

Abstract— Heterogeneous unified memory management
between a CPU and a GPU is a major challenge in GPU
computing. Recently, unified memory (UM) has been supported
by software and hardware components on AMD computing
platforms. The support could simplify the complexities of memory
management. In this paper, we attempt to have a better
understanding of UM by evaluating the performance of UM
programs on an AMD MI100 GPU. More specifically, we evaluate
data migration using UM against other data transfer techniques
for the overall performance of an application, assess the impacts
of three commonly used optimization techniques on the kernel
execution time of a vector add sample, and compare the
performance and productivity of selected benchmarks with and
without UM. The performance overhead associated with UM is not
trivial, but it can improve programming productivity by reducing
lines of code for scientific applications. We aim to present early
results and feedback on the UM performance to the vendor.

Keywords—Unified memory, Performance evaluation, GPU

I. INTRODUCTION

Unified memory (UM) allows modern graphics processing
units (GPUs) and central processing units (CPUs) to share
heterogeneous unified memory address space by GPU runtime
support [1]. In a conventional heterogeneous programming
model, developers need to explicitly copy data between a CPU
and a GPU before and after executing a task on a GPU [2, 3, 4].
Compared to the explicit copy-then-execute approach, the
runtime, operating system, and underlying hardware
automatically migrate data to destinations in UM, relieving a
developer from managing data migration between a host and a
device explicitly for complex applications.

However, conventional programming models are still widely
used because UM sacrifices performance for flexibility [5, 6, 7,
8, 9]. UM incurs performance overhead because a GPU runtime
must trace memory accesses, determine the granularity of data
migration, and handle page faults, etc. To mitigate performance
issues of UM, the GPU computing communities have mainly
focused on developing optimization techniques with the CUDA
programming model on NVIDIA GPUs [10, 11, 12, 13].

HIP is a C++ runtime application programming interface
(API) and kernel language that allows developers to write
portable applications for AMD GPUs from a single source. HIP
now supports and automatically manages heterogeneous
memory management (HMM) allocation on AMD GPUs [14].
Previous studies evaluated the performance of UM applications
and benchmarks on NVIDIA GPUs [5-9]. In this work, we
modify existing benchmarks for UM support with HIP and
evaluate their performance on a recent AMD discrete GPU.

Jeffrey Vetter
Oak Ridge National Laboratory
vetter@computer.org

Rather than proposing new optimization techniques for UM, our
experimental results aim to provide timely feedback on the
performance of UM benchmarks in HIP on an AMD GPU and
invite discussions about performance optimization techniques
for the software stack and hardware devices on AMD computing
platforms.

More specifically, we evaluate the data migration methods,
including UM, pageable memory, pinned memory, and zero-
copy, and show their impacts upon the performance of the
matrix multiplication and vector addition. Then, we evaluate the
effectiveness of the UM optimization techniques in reducing the
kernel execution time with a performance profiler. Finally, we
evaluate the performance of eight benchmarks in the high-
performance computing and machine learning domains with and
without UM. Despite the performance overhead incurred by
UM, we argue that UM can improve programming productivity
by reducing lines of code of scientific applications.

We have described the motivation and scope for our work.
The rest of the paper is organized as follows. Section II
introduces the UM support, the GPU execution model, and the
AMD GPU architecture. Section III describes our performance
evaluation of programs and benchmarks with UM support on the
target GPU. Section IV summarizes related work, and Section V
concludes the paper.

II. BACKGROUND

A. Unified memory support in ROCm

AMD ROCm is a software stack composed of development
tools, libraries, compiler toolchains, programming models, and
drivers/runtime [15]. ROCm has been enhancing HIP with UM
support. UM maps and migrates data seamlessly without
developers’ explicitly copying data between different memory
allocations. To enable the feature, explicitly call the
“hipMallocManaged()” function is needed in a HIP program.
“hipMemAdvise()”, “hipMemPrefetchAsync()” and related
application programming interfaces (APIs) might aid the
runtime with memory usage hints for performance optimization.

UM is only supported on recent Linux kernels. Before
making the managed memory API call in a HIP program, it is
recommended to either perform a capability check by querying
the feature of a device or look for the HMM-specific message in
the kernel log.

UM only works on recent AMD GPUs, including VegalO
and MI100. Older GPUs such as Fiji and Polaris are not
supported. There are two flavors of the support: XNACK-
enabled and XNACK-disabled. In the XNACK-enabled mode,

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally

sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).



http://energy.gov/downloads/doe-public-access-plan

a GPU can handle retry of a memory access after page-faults,
which enables mapping and migrating data on demand, as well
as memory overcommitment. In the XNACK-disabled mode, all
memory must be resident and mapped in GPU page tables when
the GPU is executing application code. The XNACK-enabled
mode only has experimental support. Not all the math libraries
included in ROCm support the XNACK-enabled mode on
current hardware. A mode can be chosen at boot-time, and the
default is XNACK-disabled. Due to the uncertainties of the
XNACK-enabled mode, our evaluation is limited to the
XNACK-disabled mode. We would like to investigate the
XNACK-enabled mode in our future work.

B. GPU execution model and architecture

A GPU program generally consists of two integral parts: a
host program and a device program or a GPU kernel. A host
program runs on a host processor while a kernel runs on a GPU.
A kernel, which usually represents a computationally intensive
task, is executed by multiple work-items (WIs) and these work-
items are grouped into work-groups (WGs). The number of
WGs and the number of WIs per WG are specified
programmatically. These WGs are executed by an array of
Compute Units (CUs) that form the core of a GPU. An AMD
GPU has multiple CUs and each CU is a processor with program
counters, scalar registers, vector registers, arithmetic logical
units (ALU), etc. There is a level-one (L1) cache for each CU
and all CUs share a L2 cache via an interconnect network.

The 7-nm MI100 is a discrete GPU with 120 CUs. As shown
in the specification [16], each CU contains a scalar ALU, 104
scalar registers, and four single-instruction-multiple-data
(SIMD) units. Each SIMD unit has 64 vector registers and 16
ALUs. The maximum clock frequency is 1502 MHz and the
maximum number of Wls in a WG is 1024. The sizes of the L1
and L2 caches are 16 KB and 8 MB, respectively. The total
number of stream processors are 7680 (120 x 4 x 16).

Bandwidth (MB/s) for matrix multiplication kernel

2500
2250
2000
1750
1500
1250
1000
750
500 |
P Y FF
o =il il &
L S
X\\\\ QQ QQ o
0@ @(“ \ec’ ?* zbc’ ﬁ%
[4) AS)
/\/ rod QQ Q Q'Q
oY \Z/Q @\/0 §’
R & Q";o oaé‘
£ )
R &
R

H4K m]6K m64K m256K m1024K m4096K m16384K

Fig 1. Overall performance of the matrix multiply application with respect
to data migration methods on the MI100 GPU. The memory size ranges
from 4 KB to 16384 KB.

III. EVALUATION

We will describe our experiments on the MI100 GPU in the
following order. Firstly, transparent data migration with UM is
compared against other data transfer techniques for the overall
performance of the matrix multiply and vector add applications.
Secondly, we examine the impacts of three commonly used
optimization techniques on the kernel execution time of a vector
add example. Lastly, we compare the performance and
programming productivity of selected benchmarks with and
without UM.

A. Impacts of data migration techniques on the application
performance

As mentioned before, explicit data migration is commonly
used in many GPU applications. The UM support in CUDA or
HIP was introduced after explicit data migration had been
widely adopted by the GPU research community. In addition,
UM’s performance issues may discourage people from porting
a program written with the explicit-copy-then-execution
approaches. Despite these factors, we will evaluate the impacts
of data migration approaches [17, 18] upon the performance of
an application. Starting with the NVIDIA UM performance
sample that contains a matrix multiplication kernel [19], we port
the sample to HIP with HIPIFY [20], and add another sample
with a vector add kernel. We build all HIP programs in our work
with ROCm version 4.5.2.

Figures 1 and 2 show the overall performance reported as
bandwidth (MB/s) across various memory sizes of the matrix
multiplication and vector addition applications, respectively.
The overall performance is derived from the sum of data transfer
time between a host and a device, device execution time, and
host access time. “UM-hint” and “UM” indicate unified memory
with and without memory usage hints, respectively. “ZeroCopy”
uses zero-copy buffers for data migration. “PageableCopy”
copies data from pageable host memory to device memory
whereas “PageLockedCopy” transfers data from page-locked

Bandwidth (MB/s) for vector add kernel

2750
2500
2250
2000
1750
1500
1250
1000
750
500
20 "l i il
o
\\ QOQ Z/C/‘QQ\\ BN Qo Yg\\
N
N (\/@ %@,30 (/QQ* Qc\#@ O.Qﬁ
NS o
o@% Qr:;/’@ &
>Y oy
%
Qv

4K m]6K m64K m256K m1024K ®4096K ®16384K

Fig 2. Overall performance of the vector add application with respect to data
migration methods on the MI100 GPU. The memory size ranges from 4 KB
to 16384 KB.



host memory to device memory. The suffix “Async” indicates
that data transfers are performed asynchronously on a host. The
bandwidth of “UM-hint” is approximately 1.2X to 7.5X slower
than that of “UM” across the matrix sizes for the matrix
multiplication. The bandwidth of “UM-hint” is also
approximately 3.0X to 8.5X slower than that of “UM?” across the
vector sizes for the vector add. On the other hand, when the
memory size ranges from 4 KB to 64 KB, the performance of
“UM” is approximately 1.07X to 2.8X higher than that of
“PageLockedCopyAsync” for the matrix multiply. It is also
approximately 1.6X to 3.1X higher than that of
“PageLockedCopyAsync” for the vector add. The performance
of “UM” gradually decreases from the peak performance at the
memory size of 64 KB for the matrix multiplication. For the
vector add, the peak performance of “UM?” is at 1024 KB. The
experimental results show that the performance of the
applications using UM is closely related to data transfer size and
memory accesses of a kernel. Compared to “UM?”, prefetching
memory as a memory usage hint leads to significant data
transfers between the host and device.

B. Impacts of UM optimizations on the kernel performance

Managed memory may not be physically allocated when
calling the API function to allocate memory that will be
automatically managed by HIP; it may only be populated on
access or prefetching. At the runtime level, pages and page table
entries may not be created until they are accessed by a device.
Pages could migrate to any processor’s memory at any time as
the runtime may not automatically copy all pages needed by a
kernel to a GPU before running the kernel. While the kernel
launch may not incur any migration overhead, accessing any
absent pages causes a GPU to stall the execution of the accessing
threads, and wait for the migrating pages to reach the device
before resuming the threads.

Empirical studies showed that three optimization techniques
for UM are effective in improving the kernel performance on
NVIDIA Pascal and later GPUs [21]:

1. Move data initialization to a GPU into another kernel.

2. Run a kernel many times and look at the average and
minimum execution time.

3. Prefetch data to GPU memory before running a kernel.

We use a vector add kernel (i.e., y = x + y) to measure the
impacts of the three optimization techniques on the kernel
execution time on the MI100 GPU. Without UM, the vector
arrays are initialized on the host, copied to the GPU for
execution, and finally the results are copied back to verify their
correctness. We profile the programs with the ROCm profiler, a
command-line interface for AMD GPU profiling libraries. We
run the kernel with pageable memory copy (non-UM) and
unified memory (UM) for 100 iterations.

Figure 3 shows that the decrease of the kernel execution time
ranges from approximately 1.1X to 2.8X with respect to the
vector length for the three optimization techniques. However,
the execution time is still approximately 1.4X to 74.8X longer
than that of the kernel that takes the copy-then-execute
approach. The worst kernel performance occurs when the vector
length is 4096K. The results indicate that the extra cost of data

Speedup of kernel execution time with three optimization

techniques
3
2
1
1K 4K 16K 64K 256K 1024K 4096K
mUM ®UM-optl UM-opt2 = UM-opt3

Fig 3. Performance speedup achieved by the three optimization methods on
the MI100 GPU. The vector length ranges from from 1K to 4096K. The
kernel execution time of the baseline (UM) is normalized to 1.

TABLE I. PERFORMANCE PROFILING METRICS

Metrics Descriptions
The total kilobytes fetched from the global memory. This is
FetchSize | measured with all extra fetches and any cache or memory
effects are considered.
The total kilobytes written to the global memory. This is
WriteSize | measured with all extra fetches and any cache or memory
effects are considered.
Ig::lrlne gmt The percentage of GPU time the memory unit is stalled.
L2Cache The percentage of fetch, write, atomic, and other
Hit instructions that hit the data in L2 cache.

migration, which is included in the kernel execution time, can
only be partially mitigated with these optimization techniques.

To have a better understanding of the performance gaps, we
profile the kernels with the collected metrics and their
descriptions listed in Table I.

Figure 4 shows the fetch and write sizes over 100 iterations
for the two data migration methods when the vector length is
4096K. The fetch sizes are on average 2.04X and 2.34X larger
than the write sizes for UM and non-UM, respectively. While
the write size is fixed at 16384 KB -for UM, it fluctuates slightly
between 14037 KB and 14068 KB for non-UM. This implies

Fetch and write sizes (kilobytes)
35000
30000
25000
20000
15000
10000

e FetchSize WriteSize

FetchSize (UM) WriteSize (UM)

Fig 4. Fetch and write sizes over 100 iterations of kernel execution for a
vector length of 4096K



Percentages of memory unit stalled and L2 cache hits

40

30

20

10 WMAM\-VMM

0

e \emUnitStalled e | 2 CacheHit

MemUnitStalled (UM) L2CacheHit (UM)

Fig 5. Memory stall rates and L2 cache hits rate over 100 iterations of kernel
execution for a vector length of 4096K

that global memory writes are partly cached. The fetch size for
UM is on average 2.1% larger than that for non-UM; the fetch
sizes are not constant for both UM and non-UM over 100
iterations. The fetch sizes are on average 0.23% and 2.3% higher
than the total sizes of the two vectors in bytes for non-UM and
UM, respectively. The results suggest that UM incurs more data
migration between a host and a device.

Figure 5 shows the percentages of memory unit stalled and
L2 cache hits. The cache hit rate levels off at around 33% for
non-UM, but it is almost zero for UM. Hence, the L2 cache is
hardly utilized to improve data locality for UM. The stall rate for
UM fluctuates between 10% and 20% while the rate for non-UM
fluctuates between 8% and 10%. The stall rate for UM is on
average 3.6% higher than that for non-UM due to the larger
number of memory fetches and writes.

Figure 6 shows the percentages of memory unit stalled with
respect to the vector length when the kernel is executed for 100
iterations in the UM mode. When the vector length ranges from
1K to 64K, the stall rate is almost zero over 100 iterations.
Further increasing the vector length leads to fluctuating rates

Percentages of memory unit stalled

fﬁq,\w W”A I I

() co——————

R

e MemUnitStalled-4096K e MemUnitStalled-1024K

MemUnitStalled-256K MemUnitStalled-64K
e M emUnitStalled- 16K e MemUnitStalled-4K
@ \[emUnitStalled-1K

Fig 6. Memory stall rates with respect to the vector length when the kernel
is executed for 100 iterations in the UM mode

Percentages of L2 cache hits

e | 2 CacheHit-4096K
e | 2 CacheHit-1024K
L2CacheHit-256K
L2CacheHit-64K
e | 2 CacheHit-16K
e | 2 CacheHit-4K

‘““U. RAFSAA AMAFIAAN

Fig 7. L2 cache hit rates with respect to the vector length when the kernel is
executed for 100 iterations in the UM mode

mostly between 10% and 25%. The result shows that the stall
rate is highly sensitive to the increase of memory size in UM.

Figure 7 shows the percentages of L2 cache hits with respect
to the vector length when the kernel is executed for 100
iterations in the UM mode. After the hit rates peak in the
beginning for the shorter vector lengths, they appear fluctuating
between 0% to 4%. For larger vector lengths, the hit rates are
less than 1%. The result shows that the hit rate is not constant
across the iteration range. It is less sensitive to the increase of
memory size in UM.

C. Performance and Productivity of UM Benchmarks

We choose eight benchmarks from different domains for
evaluating the UM performance. “backprop”, “hotspot”, and
“pathfinder” are grid applications in the Rodinia benchmark
suite [22]. “winograd” and “mnist” are machine learning
benchmarks for Winograd convolution [23] and convolution
neural network [24], respectively. “deredundancy” is an award-
winning bioinformatics application for gene de-redundancy
[25]. “s3d” is a scientific application for combustion simulation
from the SHOC benchmark suite [26]. “gpp” is a proxy
application for the generalized plasmon-pole model from
BerkeleyGW, a many-body perturbation theory code [27]. We
write these benchmarks in HIP and convert the copy-then-
execute APIs to the UM APIs. Specifically, the host and device
pointers involved in data transfers between the two are replaced
with the “hipMallocManaged()” function calls. All memory
copy APIs (i.e., “hipMemcpy()”) explicitly called in a program
are not needed in the UM model. This may involve rewriting
codes around the API calls in some benchmarks to implement
the equivalent functionalities. Hence, certain data structure used
on the host side may be modified for the UM version. For
example, a 2D host array may be flattened into a 1D array before
it is allocated with UM. This is because the kernel still expects
a pointer to a 1D array.

To evaluate the performance of benchmarks with or without
UM fairly, we propose to measure the time of executing both
host and device codes rather than the time of executing device
codes alone. Hence, for the HIP benchmarks without UM, our



TABLE II. EXECUTION TIME IN SECONDS OF THE BENCHMARKS

Benchmark Non-UM (s) UM (s) Slowdown (%)
backprop 0.68 0.73 7.3
deredundancy | 100.3 103.6 33
gpp 267 N/A N/A
hotspot 1.09 1.21 11
mnist 51 64 25.4
pathfinder 0.81 0.93 14.8
s3d 0.118 0.128 8.4
winograd 1.9 59 210

timing measurement starts from allocation and initialization of
data structures in host and device memory spaces, data transfers
from a host to a device, execution of kernel(s) on a device, data
transfers from a device to a host, and stops after deallocation of
data structures in host and device memory spaces. For the UM
benchmarks, our timing measurement starts from allocation and
initialization of data structures in UM, execution of kernel(s),
and stops after deallocation of data structures in UM.

Table II lists the execution time in seconds of the
benchmarks with or without UM and the comparison of their
execution time. The result of the “gpp” benchmark with UM is
not available because it causes the benchmark to hang. Among
the other benchmarks, the performance of “winograd” is worst
with UM. We try to have a better understanding of the
significant drop in performance. Looking into “winograd”, we
find that the performance bottleneck lies in the loop body where
Winograd convolutions are performed. The amount of CPU and
GPU workloads are computed in the beginning of each loop
iteration. For the first seven loop iterations, the workload size is
zero on a CPU. Then, both host and device will compute their
parts of Winograd convolution and write their results to a buffer
allocated with UM concurrently.

Figure 8 shows the fetch and write sizes over the loop
iteration range for the Winograd benchmark with and without
UM. Because the CPU workload increases from zero to the
maximum over the iteration range, the fetch and write sizes
decrease generally over the iteration range on the GPU.
However, there are three spikes in the fetch and write sizes with
UM. The first spike occurs when the CPU and GPU start co-
executing the Winograd convolution at the 8™ iteration, causing
the runtime to synchronize memory between the host and device
with excessive amount of data migration. As the CPU workload
continues to increase, the size of the output from the CPU
convolution written to the buffer in UM reaches to a point (i.e.,
the second spike) where it triggers significant data migration
between the host and device again. The last spike, the magnitude
of which is significantly lower than the previous spikes,
increases the stall rate of the memory unit from around 50% to
77%. Additional performance profiling metrics, such as memory
thrashes, addresses of CPU and GPU page faults, and the
correlation of memory events with application code, may be
provided by the ROCm profiler to fully understand the causes of
the spikes.

Fetch and write sizes (kilobytes)

70000
65000 e Pt ch Qi
60000 FelchS?/e
55000 FetchSize (UM)
50000
45000
40000
35000
30000
25000
20000
15000
10000
5000
0

WriteSize
WriteSize (UM)

Fig 8. Fetch and write sizes of the “winograd” kernel over the loop iteration
range

Percentages of memory unit stalled and L2 cache hits

90
80
70
60
50
40
30
20
10

0

L2CacheHit
L2CacheHit (UM)

e \emUnitStalled

MemUnitStalled (UM)

Fig 9. Memory stall rates and L2 cache hit rates of the “winograd” kernel
over the loop ieration range

Figure 9 shows the percentages of memory unit stalled and
L2 cache hits for the Winograd benchmark with and without
UM. With the increasing amount of CPU workload, the stall rate
decreases slowly from around 20% to around 7% for the non-
UM implementation. However, the stall rate ranges from 50%
to 75% for the UM implementation. The hit rate ranges from
81% to 85% without UM, but it is almost zero with UM. The
results show that UM is unable to utilize L2 cache for
performance improvement.

We argue that lines of code (LOC), which measure the size
of a computer program by counting the number of lines in the
text of the program’s source code, can estimate programming

TABLE III. PROGRAMMING STEPS WITH AND WITHOUT UM

Step Non-UM UM
1 Allocate host memory

Allocate device memory

Initialize host memory

Copy data from host memory

to device memory

Launch kernel(s)

Copy data from device

memory to host memory

Deallocate device memory

Deallocate host memory

Allocate unified memory

Initialize unified memory

Launch kernel(s)

Deallocate unified memory

[e RN (=)} W ESN w N




TABLE IV. LINES OF CODE OF THE HOST PROGRAMS IN THE BENCHMARKS

Benchmark N(”L"(;lcj,j” (LUO]%‘) Re(?gg)rm File of interest
backprop 100 93 7 main.cu
deredundancy 239 221 18 main.cu
£pp 204 156 48 main.cu
hotspot 147 136 11 hotspot.cu
mnist 142 139 3 main.cu
pathfinder 186 180 6 main.cu
s3d 194 171 23 S3D.cu
winograd 137 127 10 main.cu

productivity. UM could achieve better programming

productivity or simplify the complexities of a program by
reducing the number of logical steps needed for writing a
program for heterogeneous computing.

As shown in Table III, UM eliminates the needs of allocating
host and device memory separately, and explicit data transfers
between host and device memory. Hence, the number of logical
steps decrease from 8 to 4. When there are many host and device
memory allocations as well as data transfers in a complex
application, UM could simplify the complexity more
effectively.

To evaluate the productivity of UM, we compare LOC of the
host programs with or without UM and the names of the
programs in these benchmarks. It should be noted that the
amount of reduction in LOC with UM is closely related to how
host and device codes interact in each application.

Table IV shows that UM can reduce LOC by 3 to 48
depending on the benchmarks. Although the decrease of three
lines is trivial for a program, removing nearly 50 lines could
improve programming productivity and program readability.

IV. RELATED WORK

In [5], the authors evaluate the performance impact of
adopting UM for solving sparse systems of linear equation with
CUDA 6.0. Their experience is using UM never resulted in more
than a 25% slowdown over hand-tuned code. The speedup
achieved by UM ranges from 0.77 to 1.39. Looking closely at
the problem sizes and execution time, we observe that the UM
implementation is generally faster than the non-UM
implementation for small problem sizes. On the other hand, they
report that UM can simplify the code structure because the CPU
and GPU can access data stored in managed memory at different
computing stages of the algorithm. Additionally, UM offers ease
of programming for object-oriented programming with sharing
of objects between host and device code.

In [7], the authors find that for many applications and
memory access patterns, the performance overheads associated
with UM are significant at large problem sizes on the NVIDIA
K40 and Jetson TK1 GPUs, while the simplifications to the
programming model restrict flexibility for adding future
optimizations. For their microbenchmarks and the Rodinia
benchmarks, the difference in code complexity between the UM
and non-UM version is little, with no more than 10 lines of code
changing across versions. They conclude that for many GPU
applications which operate on arrays of data, the introduction of
UM does not provide a large simplification. While their

performance trend is consistent with our evaluation, we argue
that UM can reduce code complexity for complex scientific
applications.

In [8], the authors found that the performance improvement
with UM is 1-3% for the selected tests for heat distribution, but
most applications saw performance drops or time close to those
using the standard (non-UM) APIs. Their experiments showed
that the performance of UM appears to be worse when data
transfer time relative to kernel computations on a GPU is
substantial and that more data compared to the standard version
is transferred in the UM version. However, UM is a mechanism
that allows people to quickly write programs like standard
programs written for a CPU. Their results are consistent with the
increasing fetch and write sizes for larger problem sizes in our
experiment. However, porting a program written with standard
APIs to a program with UM requires an understanding of how
host and device code work in an application.

In [9], the authors evaluate the performance of a set of UM
benchmarks over Intel-Volta/PascalPCle based systems and the
Power9-Volta-NVLink based system. They find that the
effectiveness of memory usage hints and prefetching depends on
the platform, but the overhead of handling page faulting is more
significant compared to the execution time of the benchmarks
with explicit data transfers. In their work, they also evaluate the
performance of these optimization techniques when GPU
memory is oversubscribed. We argue that improving the
performance of in-memory execution in UM should be
addressed first. They also mention the effort in operating system
of providing mechanisms to mirror a CPU page table on a GPU
and integrate device memory pages in a system page table. This
is important because a recent Linux kernel is required for the
UM support on an AMD GPU.

In [28], the authors present 32 open-source UM benchmarks
in CUDA and evaluate their performance on an NVIDIA Pascal
GPU. They find that across the benchmarks the performance of
the UM benchmarks is on average 34.2% slower compared with
the benchmarks without UM due to the cost of page fault
handling. They apply the three optimization techniques
summarized in our paper to the UM benchmarks that cause the
highest slowdown. These techniques are effective in improving
the performance of the benchmarks in their study. Their results
are consistent with our findings using a vector add kernel.
However, we would like to add more benchmarks and
applications with UM in our future work.

Besides the extensive performance evaluation of
benchmarks and applications with CUDA’s UM support on
NVIDIA GPUs, in-depth analyses and optimizations of the
implementations of UM through GPGPU simulators are
described in [10, 11, 12, 13]. Our work aims to provide early
results and feedback to the vendor from the aspects of
application development and performance evaluation.

V. CONCLUSION

The performance overheads associated with UM on an AMD
GPU are significant based on our experimental results. Given
the large amount of work on performance evaluation and
optimization of UM on NVIDIA Pascal and later GPUs, such
overheads may be expected for AMD GPUs. While the feature



has only been supported with recent AMD software and
hardware components, there are optimization spaces of reducing
fetch and write sizes for large memory sizes, improving L2
cache hit rates and decreasing memory unit stalls, and adding
more performance metrics related to UM and GPU architectures
in the ROCm profiler. On the other hand, our benchmark results
show that UM can improve programming productivity
effectively for certain scientific applications by reducing lines of
code. We expect that the performance gap between UM and non-
UM benchmarks will gradually shrink with the maturing
software and hardware components.

ACKNOWLEDGMENT

We sincerely appreciate the reviewers for their comments and
suggestions. The author would like to acknowledge people at the
Advanced Computing Systems Research section in Oak Ridge
National Laboratory for their generous support. This research
used resources of the Experimental Computing Lab (ExCL).
This research was supported by the US Department of Energy
Advanced Scientific Computing Research program under
Contract No. DE-AC05-000R22725.

REFERENCES

[1] Chu, H., 2013. AMD heterogeneous uniform memory access.
Proceedings of the APU 13th Developer Summit, pp.11-13.

[2] Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J., 2008. NVIDIA
Tesla: A unified graphics and computing architecture. IEEE micro, 28(2),
pp.39-55.

[3] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J.,
Morton, S., Phillips, E., Zhang, Y. and Volkov, V., 2008. Parallel
computing experiences with CUDA. IEEE micro, 28(4), pp.13-27.

[4] Nickolls, J. and Dally, W.J., 2010. The GPU computing era. IEEE micro,
30(2), pp-56-69.

[5] Negrut, D., Serban, R., Li, A. and Seidl, A., 2014. Unified memory in
CUDA 6.0. A brief overview of related data access and transfer issues.
SBEL, Madison, WI, USA, Tech. Rep. TR-2014-09.

[6] Landaverde, R., Zhang, T., Coskun, A.K. and Herbordt, M., 2014,
September. An investigation of unified memory access performance in
CUDA. In 2014 IEEE High Performance Extreme Computing Conference
(HPEC) (pp. 1-6). IEEE.

[71 Li, W., Jin, G., Cui, X. and See, S., 2015, May. An evaluation of unified
memory technology on NVIDIA GPUs. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (pp.
1092-1098). IEEE.

[8] Jarzabek, L. and Czarnul, P., 2017. Performance evaluation of unified
memory and dynamic parallelism for selected parallel CUDA
applications. The Journal of Supercomputing, 73(12), pp.5378-5401.

[9] S. Chien, I. Peng and S. Markidis, Performance Evaluation of Advanced
Features in CUDA Unified Memory, 2019 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC), 2019, pp. 50-
57

Jog, A., Kayiran, O., Mishra, A.K., Kandemir, M.T., Mutlu, O., Iyer, R.
and Das, C.R., 2013, June. Orchestrated scheduling and prefetching for
GPGPUs. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (pp. 332-343).

Yu, Q., Childers, B., Huang, L., Qian, C. and Wang, Z., 2020. A
quantitative evaluation of unified memory in GPUs. The Journal of
Supercomputing, 76(4), pp.2958-2985.

Ganguly, D., Zhang, Z., Yang, J. and Melhem, R., 2019, June. Interplay
between hardware prefetcher and page eviction policy in CPU-GPU
unified virtual memory. In Proceedings of the 46th International
Symposium on Computer Architecture (pp. 224-235).

Kim, H., Sim, J., Gera, P., Hadidi, R. and Kim, H., 2020, March. Batch-
aware unified memory management in GPUs for irregular workloads. In
Proceedings of the Twenty-Fifth International Conference on

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19
[20
[21]

= =

[22]

[23]

[24
[25]

[}

[26]

[27]

[28]

Architectural Support for Programming Languages and Operating
Systems (pp. 1357-1370).

The AMD HIP Programming Guide v4.5.
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HI
P_Programming_Guide.pdf

Open Source Platform for HPC and Ultrascale GPU Computing.
https://github.com/RadeonOpenCompute/ROCm
The AMD MII00 GPU Instruction Set  Architecture.

https://developer.amd.com/wp-
content/resources/CDNA1_Shader ISA 14December2020.pdf

CUDA C++ Programming Guide. https://docs.NVIDIA.com/cuda/cuda-
c-programming-guide
CUDA Runtime APL
api/index.html
https://github.com/NVIDIA/cuda-samples
https://github.com/ROCm-Developer-Tools/HIPIFY
Harris M., 2013, Unified memory in
https://devblogs. NVIDIA.com/unifed-memory-in-cuda-6/

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.JW., Lee, S.H. and
Skadron, K., 2009, October. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE international symposium on
workload characterization (IISWC) (pp. 44-54). IEEE.

Zhang, C., Zhang, F., Guo, X., He, B., Zhang, X. and Du, X., 2020.
iMLBench: A Machine Leaming Benchmark Suite for CPU-GPU
Integrated Architectures. IEEE Transactions on Parallel and Distributed
Systems, 32(7), pp.1740-1752.

https://developer.amd.com/wp-content/resources

http://docs.NVIDIA.com/cuda/cuda-runtime-

CUDA 6.

Gene sequence de-redundancy. https://devmesh.intel.com/projects/gene-
sequence-de-redundancy

Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford,
K., Tipparaju, V. and Vetter, J.S., 2010, March. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units (pp. 63-74).

Yang, C., Gayatri, R., Kurth, T., Basu, P., Ronaghi, Z., Adetokunbo, A.,
Friesen, B., Cook, B., Doerfler, D., Oliker, L. and Deslippe, J., 2018,
November. An empirical roofline methodology for quantitatively
assessing performance portability. In 2018 IEEE/ACM International
‘Workshop on Performance, Portability and Productivity in HPC (P3HPC)
(pp. 14-23). IEEE.

Gu, Y, Wu, W, Li, Y. and Chen, L., 2020. UVMBench: A
Comprehensive Benchmark Suite for Researching Unified Virtual
Memory in GPUs. arXiv preprint arXiv:2007.09822.



