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Abstract—Lossy compression techniques have demonstrated
promising results in significantly reducing the scientific data size
while guaranteeing the compression error bounds. However, one
important yet often neglected side effect of lossy scientific data
compression is its impact on the performance of parallel I/O.
Our key observation is that the compressed data size is often
highly skewed across processes in lossy scientific compression.
To understand this behavior, we conduct extensive experiments
where we apply three lossy compressors MGARD, ZFP, and SZ,
which are specifically designed and optimized for scientific data,
to three real-world scientific applications Gray-Scott simulation,
WarpX, and XGC. Our analysis result demonstrates that the size
of the compressed data is always skewed even if the original
data is evenly decomposed among processes. Such skewness
widely exists in different scientific applications using different
compressors as long as the information density of the data varies
across processes. We then systematically study how this side effect
of lossy scientific data compression impacts the performance
of parallel I/O. We observe that the skewness in the sizes of
the compressed data often leads to I/O imbalance, which can
significantly reduce the efficiency of I/O bandwidth utilization
if not properly handled. In addition, writing data concurrently
to a single shared file through MPI-IO library is more sensitive
to the unbalanced I/O loads. Therefore, we believe our research
community should pay more attention to the unbalanced parallel
I/O caused by lossy scientific data compression.

I. INTRODUCTION

As several exascale supercomputers are anticipated to be
operational in the next a few years, scientific applications
running on those machines are projected to generate massive
amount of data at enormous velocity. For example, nowadays
the X-point Gyrokinetic Code (XGC) [1] developed by the
Princeton Plasma Physics Laboratory can easily produce more
than 1PB of data per day when running on the OLCF’s Summit
supercomputer. As a conservative estimate, the data rate will
increase to 10PB per day if running on an exascale supercom-
puter. Although data storage technologies have also improved
tremendously over the years, absorbing data generated at such
high rates is almost an impossible mission for most of the
data storage systems built under rational budget. To address
this critical and challenging issue, multiple lossy compression
techniques that are specifically designed and optimized for the
data generated by scientific applications have been proposed

in recent years. Promising results from existing studies [2]–[5]
demonstrate that these lossy compression techniques can sig-
nificantly reduce the size of scientific data while guaranteeing
that the compression error is within certain bound.

Since the data size can be effectively reduced by lossy
compression, it is natural for scientists to expect the overhead
caused by writing or reading their data can also be reduced
accordingly. For example, if the size of the data is reduced by
100X, it is reasonable for scientists to believe that their data
can be written out about 100X faster. This is true when their
codes are run at small scale and only small amount of data is
written out using a few processes. However, for data-intensive
scientific applications running with massive parallelism on
high-performance computing systems, the I/O performance
does not simply depend on the size of the data. It also
depends on how efficient the concurrent I/O bandwidth can
be utilized. Ideally, the maximal concurrent I/O throughput is
achieved if all the processes write out or read in the same
amount of data. This is why when scientists configure their
simulations, they tend to divide the global simulation space
into regions of equal size and assign one region to each
process to ensure that the I/O loads from all processes are
balanced. If the I/O loads among processes are unbalanced,
meaning that some of the processes need to write out or read in
much more data than others, the overall I/O throughput would
decrease as the I/O time is determined by the slowest process
that finishes the I/O. Unfortunately, when we apply lossy
compression to the data on each process, this I/O imbalance
issue often occurs. Specifically, as the data assigned to each
process after domain decomposition are often heterogeneous in
nature, the information density of these data portions usually
varies. Therefore, applying lossy compression to such hetero-
geneous domain decomposed data would inevitably result in
significantly different compressed data sizes across the parallel
processes and cause the imbalance of the parallel I/O loads.

To verify the aforementioned conjecture and characterize
the imbalance in compressed data size, we apply three widely
used lossy compressors MGARD [2], [3], [6], [7], ZFP [4], and
SZ [5] to the datasets generated by three real world scientific
applications: Gray-Scott simulation, WarpX [8] and XGC [1],



[9]. We aim to answer the following questions.
• If the original data is evenly decomposed and assigned to

each parallel process, would the compressed data still be
imbalanced among the processes?

• Would imbalance exist in compressed data regardless of
which compression method is used?

• How imbalanced can the compressed data sizes be?
• How would the imbalance of the compressed data sizes

affect the overall I/O performance?
Our analysis shows that the compressed data is always

skewed even if the original data is evenly decomposed and
such skewness exists in all the compressed data from different
compressors. The difference in compressed data can be more
than 10X and Weibull distributions can be used to fit the sizes
of the compressed data on each process. During the write out
or read in process of scientific applications, the overall write or
read performance is usually bounded by the slowest process.
Therefore, the skewness in compressed data can potentially
degrade the parallel I/O performance if not handled carefully.
To demonstrate such negative impacts caused by unbalanced
parallel I/O due to skewed compression data, we conduct
experiments on OLCF’s Andes cluster [10]. In our experi-
ments, we launch tests to simulate the highly skewed data
among processes caused by lossy compression and measure
the write performance when different write patterns are used.
From the results, we observe that the I/O imbalance caused
by lossy compression can significantly reduce the efficiency
of I/O bandwidth utilization if the processes that own high
information density data blocks happen to run on the same
compute node. Moreover, witing data concurrently to a single
shared file through MPI-IO library is more sensitive to the
unbalanced I/O loads.

In summary, the paper makes the following contributions.
First, we characterize the skewness of three real world com-
pressed scientific data by studying three widely used data
compressors. Second, we analyze the potential impacts of
the skewed compressed data on parallel I/O performance.
Finally, we compare the write time and write throughput under
different use scenarios.

II. ANALYSIS OF LOSSY COMPRESSED DATA SIZE

Scientific codes are often run with a large number of
processes in parallel on high-performance computing sys-
tems to achieve satisfactory speedups. Particularly, during the
execution of these codes, each process is often assigned a
single or multiple portions of the data to operate on, which
is known as domain decomposition or “data parallelism”. For
instance, when scientists launch an MPI-based particle-in-cell
simulation code, each MPI process is assigned to simulate
the movements of particles in certain areas of the entire
simulation region. Since the movements of particles are driven
by complex physics models, the information density of the
data that each process operates on is usually quite different.
In some areas, the large distribution of the particles leads to
high information density, while in others the data is sparse due
to the lack of physics phenomena. This type of heterogeneity

Fig. 1: Different simulation steps of domain decomposition in
parallel scientific applications.

in domain-decomposed data, is commonly observed in many
other parallel scientific applications [9].

Fig. 1 shows an example of the domain decomposition in
a parallel Gray-Scott simulation [11]. Each of these three
sub-figures illustrates the concentration of a chemical species
at different simulation steps. The simulation is run by 16
MPI processes and each of them operates 1

16 of the entire
simulation region. In each sub-figure, we use red dashed lines
to differentiate the areas each process owns. The first sub-
figure shows that the data on most of the processes is sparse. In
the second sub-figure, the information density of data increases
and demonstrates more differences across processes. In the
third sub-figure, the data on each process has rich information
content, but their characteristics are quite dissimilar. According
to the information theory [12], the size of the compressed
data is strongly correlated with the information content which
is defined by the entropy in the original data. If we apply
lossy compression to the data on each process, our conjecture
is that the sizes of the data after compression would be
significantly different from each other in many real world
scenarios since the data on each process has quite different
information density.

To verify our conjecture, we conduct characterization stud-
ies by applying different lossy compressors to datasets gen-
erated by three real world scientific applications. The three
lossy compressors we select for our study are MGARD [2],
[3], [6], [7], ZFP [4], and SZ [5]. These lossy compressors are
specifically designed and optimized for compressing scientific
data and their effectiveness are verified by existing works [13].
The datasets we use in our study are generated by three
parallel scientific codes. Gray-Scott is a 3D 7-point stencil
code to simulate Gray-Scott reaction diffusion model. It’s a
simple system simulating the time evolution of the spatial
distributions of two interacting chemical concentrations. And
parameters for the simulation such as the diffusion coefficient
can be easily adjusted by the user. WarpX [8] is an ad-
vanced multi-platform electromagnetic Particle-In-Cell code.
It supports many features including Perfectly-Matched Layers
(PML), mesh refinement, and the boosted-frame technique.
In addition, WarpX includes load balancing capabilities to
achieve better performance. XGC [1], [9] is a gyrokinetic
particle-in-cell code, which specializes in the simulation of
the edge region of magnetically confined thermonuclear fusion
plasma. The simulation domain can include the magnetic
separatrix, magnetic axis, and the biased material wall. All of
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Fig. 2: Distribution of data sizes among processes after applying different lossy compressors to three scientific datasets.

these datasets are written out through ADIOS2 [14], a library
that manages the parallel I/O and stores the data in a self-
describing format. The metadata of this self-describing format
contains rich information about how the dataset is generated,
such as which area each data block belongs to in the global
array, which MPI process produces which data blocks, etc.
By leveraging such information, we can launch a job to read
in the exact data blocks produced by each MPI process, and
compress them using different lossy compressors. Then we
study how different the sizes of the compressed data can be
among all the processes. Since different compressors might
adopt different error metrics, when we choose the error bounds
for each compressor, we try our best to make the peak signal-
to-noise ratio (PSNR) of the entire compressed data produced
by each compressors fall into a similar range. One thing we
would like to emphasize here is that our results cannot be
used to indicate which lossy compressor is better in terms
of compression ratio since the PSNR of the compressed data
from each compressor are not exactly the same. In this study,
we only focus on how skew the distribution of the data sizes
among processes can be after lossy compression.

For the dataset generated by the Gray-Scott simulation,
the entire data is evenly decomposed and assigned to 192
processes. The size of the original data each process owns
is 18MB. As shown in Fig. 2, after the lossy compression, the
sizes of the data on most processes are reduced to less than
0.5MB. However, no matter which lossy compressor is used,
the compressed data on a few processes are significantly larger
due to their high information density. For example, when SZ
is used, the compressed data owned by 5% of the processes
are on average more than 10X larger than other processes. As

a result, the distribution of data sizes among processes after
lossy compression is highly skewed.

When we use the dataset generated by the WarpX simulation
for our experiments, the sizes of the compressed data on almost
all of the processes are similarly small since the entire dataset
is very sparse. However, there are still several processes that
have much larger data after compression. The compressed
data on these processes can be hundreds of times larger than
the minimal data size among all the processes. When we
apply different lossy compressors to the data generated by
the XGC simulation, the sizes of the compressed data on each
process are also dispersed in a wide range. From all these
results, we can see that for parallel scientific applications,
even the original data is evenly decomposed and assigned
to each process, the sizes of the compressed data on each
process can be significantly different from each other due to
the nonuniform distribution of the information density in the
datasets.

III. IMPACT OF UNBALANCED PARALLEL I/O LOADS

When parallel scientific codes write out or read in their data,
the overall write or read performance usually depends on the
slowest process. This is because a synchronization is often
needed among processes before each computation step and no
process can start the computation of the next step until the
slowest process finishes its I/O. Therefore, scientists tend to
decompose the data into chunks of the same size and evenly
assign them to among processes, so that all the processes can
finish the data writing or reading at about the same time to
diminish the “straggler” effect. However, based on the observa-
tions we obtain in Section II, the amount of data each process
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Fig. 3: Q-Q plot of using Weibull distribution to fit the XGC data with different lossy compressors.

TABLE I: Experiments for understanding the impact of un-
balanced parallel I/O Loads.

Experiment Description
uncompressed-equal Each process writes the same amount of un-

compressed data.
compressed-random The sizes of the compressed data owned by

each process are randomly generated based on
certain probability distribution.

compressed-clustered The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but they are sorted and assigned
to each process in ascending order so that
the largest sizes are always assigned to a few
processes running on the same compute node.

compressed-equal The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but the total size of the compressed
data is equally divided by the number of pro-
cesses and each process writes the same amount
of compressed data.

writes out or reads in can be significantly different after lossy
compression even if the original decomposed data is evenly
distributed across processes, see Fig. 2. Therefore, applying
lossy compression can potentially leads to imbalanced I/O
loads across processes and thus cause “straggler” effect. In
this section, we study how the imbalance of I/O loads caused
by lossy compression affects the overall I/O performance of
parallel scientific applications.

We conduct all our I/O tests on OLCF’s Andes cluster.
Andes is a 704-compute node commodity-type Linux cluster.
Each of these compute nodes has 32 AMD EPYC 7302
cores and 256GB memory. Andes mounts the same center-
wide GPFS file system as Summit, which offers more than
3GB/s per node I/O bandwidth. Since after decomposition the
existing datasets we have are relatively small compared to
the memory size on each compute node, we notice that the
caching effect becomes a dominant factor when measuring
the write performance. The measured performance numbers do
not reflect the actual I/O throughput. In order to mitigate the
caching effects and fully saturate the I/O bandwidth, instead
of using the existing datasets, we developed a code which can
synthetically generate data with arbitrarily large sizes for each
process.

The impact of unbalanced parallel I/O might be different
if the data is written in different patterns. There are three
common patterns for writing data in parallel: N-N, N-1-
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Fig. 4: Distribution of the synthetically generated data sizes
among processes to mimic the effect of lossy compression.

collective, and N-1-independent. “N-N” denotes the code is
executed by N processes and each process writes its data to
a separate file independently. I/O libraries such as ADIOS2
adopts this pattern. “N-1-collective” denotes N processes write
out their data to a single shared file using collective MPI-
IO functions, while “N-1-independent” represents the data is
written out to a single shared file using independent MPI-IO
functions. These two patterns are used by I/O libraries such
as HDF5, PnetCDF, etc. To understand which write pattern is
more sensitive to the unbalanced parallel I/O, we measure the
performance of writing data in all these three patterns in our
experiments.

TABLE II: Experiments for understanding the impact of
unbalanced parallel I/O Loads.

Experiment Description
uncompressed-equal Each process writes the same amount of un-

compressed data.
compressed-random The sizes of the compressed data owned by

each process are randomly generated based on
certain probability distribution.

compressed-clustered The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but they are sorted and assigned
to each process in ascending order so that
the largest sizes are always assigned to a few
processes running on the same compute node.

compressed-equal The per-process compressed data sizes are ran-
domly generated based on the same probability
distribution, but the total size of the compressed
data is equally divided by the number of pro-
cesses and each process writes the same amount
of compressed data.



First of all, we measure the overall performance of writing
out the uncompressed data in different patterns as the baseline.
In this experiment, we assume the uncompressed data on
each process is 8GB. We lunch a job on Andes with 10
compute nodes and 32 processes per node, and let each
process write out 8GB randomly generated data to the file
system using different patterns. This experiment is denoted by
“uncompressed-equal” in Table II.

Secondly, we randomly generate the sizes of compressed
data owned by each process based on a Weibull distribution.
The reason for choosing the Weibull distribution is that its
probability density function usually has a long tail, which is
similar to those shown in Fig. 2. To verify it, we use Weibull
distribution to fit the real XGC data and show Q-Q plot in
Figure 3. From the plot, we can see that most points perfectly
lie on y = x, which suggests Wellbull distribution is a good
representation. Since the size of the compressed data cannot
be less than or equal to zero or greater than or equal to
the original data size, we make sure only the valid random
numbers are selected. Fig. 4 shows the sizes of the compressed
data synthetically generated for 320 processes using a Weibull
distribution whose shape parameter is 0.3 and scale parameter
is 5.0. These sizes are randomly assigned to each process and
each process writes out certain amount of data based on the
assigned size. This experiment is denoted by “compressed-
random” in Table II.

Thirdly, as shown in Fig. 1, the information density of each
process’ data demonstrates spacial locality. Data blocks that
have similar information density are likely to be assigned to
processes running on the same compute node or compute
nodes that are close to each other in the HPC system’s
interconnect topology. E.g., in the bottom left corner of the
second sub-figure in Fig. 1, data on those three processes all
have dense information content. It is also possible that those
three processes run on the same compute node as they need
to share the I/O bandwidth of that particular compute node.
If the sizes of the compressed data on those three processes
are much larger than other processes, the I/O on that compute
node would become a bottleneck. To mimic this scenario, we
sort the sizes of the compressed data synthetically generated
in the “uncompressed-random” experiment. We then assign
them to each process in ascending order, so that the largest
sizes are always assigned to a few processes running on the
same compute node to trigger the bandwidth contention. This
experiment is denoted by “compressed-clustered” in Table II.

Finally, we measure the write performance when the sizes
of the compressed data on each process are all the same.
Although this scenario rarely occurs in practice, we believe
the performance numbers can be useful for us to understand
how much write time the lossy compression can save ideally.
In order to have a fair comparison with numbers measured in
other experiments, we also use the sizes of the compressed
data synthetically generated in the previous two experiments.
We sum up all these synthetic sizes and calculate the mean of
them. Then we let each process write out data with the size of
that mean value. This experiment is denoted by “compressed-

equal” in Table II.
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Fig. 5: The overall write time.

The overall write time measured in these four experiments
are shown in Fig. 5. As we can see, adopting lossy com-
pression does reduce the overall write time. The total size
of the original data is 8 × 32 × 10 = 2560GB, while the
total size of the compressed data is 441GB. Ideally, if the
sizes of the compressed data on each process are all the same
(“compressed-equal”), we expect the write time is reduced by
roughly 6 times. However, for other more realistic scenarios,
the amount of write time reduced are less than the ideal case.
As expected, “compressed-clustered” reduces the least amount
write time. As we mentioned above, if processes running on
the same compute node all have much larger data compared
to other processes after lossy compression, I/O bandwidth
contention on that compute node is likely to happen which
makes the I/O on that particular node much slower than other
nodes. Even those processes run on different compute nodes
but those nodes are close to each other in the network topology,
bandwidth contention might also happen on the routers shared
by those nodes.
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Fig. 6: The overall write throughput.

The write throughput for different scenarios are shown
in Fig. 6. Apparently, “compressed-clustered” achieves the
lowest write throughput no matter which write pattern is used.
“compressed-random” achieves almost the same throughput as
“compressed-equal” when each process writes its own data to
a separate file. This is because in the “compressed-random”
experiment, although the data sizes are very different across
processes, the total data size of the 32 processes on each
compute node does not show significant imbalance due to the
random assignment of synthetic data sizes. If all the processes



write data to a single shared file, “compressed-equal” always
outperforms “compressed-random”. This indicates that writing
data to a single shared file is more sensitive to the unbalanced
parallel I/O loads.

IV. RELATED WORK

As the advancement of computational power has greatly
out paced capacity and bandwidth of I/O systems over the last
decade, storing the whole scientific data has become infeasible
as it will be prohibitory expensive. To reduce the cost of
I/O and speed up scientific computations,using compression
is a promising direction. Namely, scientific data are first
reduced using lossless or lossy compressor before transfer-
ring through the I/O systems. Lossless compressors [15]–[19]
offer the capability of compressing data and preserving bit-
wise identical information content in decompressed data. As
scientific data become increasingly large with the advance-
ment of scientific simulations and experiments, relative low
compression ratios obtained though lossless compression can
no longer satisfy both the time and resource constrains in
modern scientific computing. As not every bit of the scientific
data necessarily contributes to the useful information in data,
lossy compression is known as a more favorable approach
for greatly reducing the cost of I/O. Especially, to make sure
important information contents are not lost during compres-
sion, several lossy compressors for scientific data have been
proposed with guaranteed error control. For example, SZ [5]
lossy compressor is built based on using multiple prediction
methods. ZFP [4] lossy compressor is built based on block
transformation. MGARD [2], [3], [6], [7] lossy compressor is
built based on multilevel decomposition.

Based on compression techniques, many works has been
focusing on applying compression to reduce the cost of I/O.
For example, [20] proposes to use lossless compressors such
as LZO and BZip2 to reduce the amount of data transferred
over the network. They build I/O Forwarding Scalability Layer
in the communication libraries so that the compression and
decompression are transparent to users’ applications. [21]
proposes to use both lossless and lossy compressors to reduce
the data movement cost between scientific simulation code
and in-situ analytics. Based on their evaluation, they propose
an adaptive compression service for the in-situ analytics
middle-ware. [22] focuses on applying transparent compres-
sion between the computing and the storage systems. They
build on-line decision system that can predict whether to
compress at runtime, allowing guaranteed QoS for the I/O
systems. [23] proposes to adaptively applying compression at
highly-compressible regions and perform direct I/O on less-
compressible regions to optimize the overall I/O performance.

As lossy compression are continuing to evolve for achieving
higher compression ratios, it is anticipated that there will be
higher disparity in terms of compressed sizes across regions in
scientific data. This could lead to even more unblanaced I/O
workload, which results inefficient I/O operations. However,
very few existing studies have identified such issue or proposed
solutions to improve the I/O performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we focus on an often neglected side effect of
lossy scientific data compression: unbalanced parallel I/O. We
conduct a comprehensive study by applying three commonly
used lossy compressors MGARD, ZFP, and SZ to data gen-
erated by three real-world scientific applications Gray-Scott
simulation, WarpX, and XGC. Our study quantifies the data
skewness of lossy compressed scientific data across processes
due to heterogeneous information density. Further experiments
on write performance demonstrates how such data skewness
can cause unbalanced parallel I/O and thus impact the parallel
I/O performance.

In our future work, we aim to use information theory to
formally analyze the information density across decomposed
data and design an effective approach to estimate the data
skewness among parallel processes so that proper actions can
be taken to mitigate the parallel I/O imbalance issue. We also
plan to employ a tiered approach to group decomposed data
with complimentary information density on the same node to
reduce the imbalance in parallel I/O.
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