NaCo,(Se03),(OH): Competing Magnetic Ground States of a New Sawtooth Structure with
3d’ Co?" Ions

Liurukara D. Sanjeewa,*”* V. Ovidiu Garlea,© Keith M. Taddei,© Li Yin,¢ Jie Xing, Randy S.
Fishman,? David S. Parker,? Athena S. Sefat?

aUniversity of Missouri Research Reactor (MURR), Columbia, Missouri 65211, USA
bDepartment of Chemistry, University of Missouri, Columbia, Missouri 65211, USA

“Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA

*Corresponding Authors

Abstract

While certain magnetic sublattices have long been known theoretically to give rise to emergent
physics via competing magnetic interactions and quantum effects, finding such configurations in
real materials is often deeply challenging. Here we report the synthesis and characterization of a
new such material, NaCo,(SeOs3),(OH) which crystallizes with a highly frustrated sublattice of
sawtooth Co?" chains. Single crystals of NaCo,(SeOs),(OH) were synthesized using a low-
temperature hydrothermal method. X-ray single crystal structure analysis reveals that the material
crystallizes in orthorhombic space group of Pnma (no. 62). Its crystal structure exhibits one-
dimensional chains of corner-sharing isosceles triangles that are made of two crystallographically
distinct 3d” Co?* sites (Co(1) and Co(2)). The chains run along the b-axis and are interconnected
via [SeOs;] groups to form a three-dimensional structure mediating super-exchange interactions.
The temperature dependent magnetization data show a ferromagnetic-like (FM) transition at 11 K
(Ty) followed by an antiferromagnetic (AFM) transition at about 6 K (73). Neutron-powder
diffraction measurements reveal that at 77 = 11 K only Co(2) site orders magnetically, forming

ferromagnetic zigzag chains along the b-axis. Below 7, = 6 K, both Co(1) and Co(2) sites order in

an nearly orthogonal configuration, with Co(1) moments lying inside the plane of the sawtooth
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chain while Co(2) moments cant out of the plane. The canting of the magnetic moments leads to a
net ferromagnetic component along b-axis, parallel to the chain direction. The ordered moments
are fully compensated in the ac-plane. Inelastic neutron scattering measurements reveal crystal
field excitations that are consistent with the presence of a spin-orbital entangled pseudo-spin state
Joie = 1/2 for the Co?* ions. Low-energy spin-wave excitations are observed below the second
magnetic transition. The analysis of powder excitation spectrum suggests complex exchange
interactions that go beyond a Heisenberg Hamiltonian model with nearest neighbor couplings. Our
results demonstrate the richness of the magnetic properties of sawtooth-type structures and
encourage the study of similar structures with different oxyanion groups.

1. Introduction

The search for new classes of quantum materials is a vigorous pursuit among material scientists
and condensed matter physicists due to the powerful implications many such materials have for
technological applications. Specifically, quantum materials with realizing exotic states of matter,
including quantum spin liquid (QSL) have attracted special attention in the past decade due to the
interest of quantum information applications. The QSLs exhibit a highly entangled quantum state
which often arise from geometrically frustrated magnetic systems with numerous degenerate
magnetic ground states. Examples of such systems have focused mainly in two-dimensional (2D)
triangular, Kagome and honeycomb magnetic lattices and three-dimensional (3D) pyrochlore
lattices. The triangular magnetic lattice, in which magnetic ions reside on the vertices of the
triangles, is one of the simplest ways to achieve geometric frustration. In this geometry long-range
magnetic order can be suppressed by an inability of the system to satisfy all magnetic interactions
simultaneously. From the theoretical point of view, such frustration could manifest quantum

fluctuations and lead to a spin-liquid like state near 7= 0 K. [1-8]
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In addition to the 2D triangular magnetic lattices, geometrical frustration has also been observed
in one-dimensional (1D) chains where the topology of corner sharing antiferromagnetic triangles
form infinite chains. For example, the triangular spin tube, sawtooth (A-chain) chain and half
sawtooth chains are seminal models in the field of frustrated 1D quantum magnetic systems. [9-
12] In the sawtooth chain magnetic lattice, the corner-sharing magnetic triangles connect in an up
and down fashion along the chain. Within each triangle, two crystallographically independent sites
produce two different exchange parameters between the base-base (J,,) and the base-vertex (Jyy)
pathways. Therefore, complex magnetic ground states can be anticipated depending upon the
relative strengths of Jy, and Jy, such as Ising-type interactions, Heisenberg interactions, and
Dzyaloshiniskii-Moriya interactions leading to rich magnetic phase diagrams. The ground state
of a uniform § = 1/2 sawtooth chain is theoretically well understood. It consists of a twofold
degenerate superposition of spin singlets formed by either left or right pair of spins of each triangle.
The lowest excitation in a sawtooth chain with periodic boundary conditions is given by a kink-
antikink pair, which has a dispersionless gap AE = 0.234J where J is the coupling between pairs
of spins. [9-20] Moreover, in the classical limit, some saw-tooth model systems possess zero
energy flat-band modes, remarkably similar to a Kagome antiferromagnet (sawtooth magnetic
lattice is a partial structure of the Kagome lattice). Strongly correlated flat-band systems with
localized magnon states in high magnetic fields are the subject of intensive studies, as flat-band
modes offer promising possibilities for manipulating the propagation of waves of any origin.
Therefore, though originally driven by the search for complex magnetic ground states, recent
studies on sawtooth chain lattices have been devoted to developing magnonic devises due to the

presence of highly degenerate flat bands. [21]
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To date, the realization of sawtooth lattice structures has been very limited to: delafossite-YCuO; s,
[22-23] olivines-ZnLn,S4 (Ln = Er and YD), [24] A,BX, (A = Mn, Fe, Ni; B = Si, Ge; X =8, Se, Te
0), [25-29], euchroite-Cu,(AsO4)(OH) 3H,0, [30-31] RbyFe,O(AsOy),, [32] Cu,CI(OH)s, [14]
and Fe,O(Se0s), [33]. Experimentally, YCuO, s, [22] Cu,(AsO4)(OH) 3H,0 [29] and ZnLn,S4 [23]
do not show any long range ordering, and are therefore thought promising candidates to study
quantum spin liquid behavior. On the other hand, oxyanion-based compounds, Rb,Fe;O(AsOy),
(Tn=25K) [32] and Fe,O(Se0O;), display interesting magnetic properties, with the former having
a complex magnetic phase diagram with field induced states and the latter exhibiting an unusually
high long-range magnetic ordering temperature for this type of compound, 7 = 105 K [33]. The
A>BX, (A =Mn, Fe, Ni; B=Si, Ge; X=S, Se, Te, O) olivine type structures display a wide range
of magnetic ground states depending upon the 4-, B- and X-sites ions [25-29]. Hence, the search
for novel magnetic grounds states has made the synthesis of new sawtooth compounds a goal for
materials chemists.

The synthesis of transition metal-based oxyanions compounds is mostly limited to tetrahedral
groups such as PO, AsO4*, VO4*-, MoO,>. These oxyanion groups together with open shell
transition metal ions can form a variety of low-dimensional structures. In general, single crystals
of these transition metal-based oxyanions are synthesized using fluxes (salt fluxes, carbonate
fluxes, oxide fluxes and etc.). [34-37] Recently, we have been exploring novel metal-based
oxyanions quantum materials using both low-temperature (7 < 220 °C) and high-temperature (7=
500 — 700 °C) hydrothermal synthesis. [38] We have successfully employed the hydrothermal
method to synthesize numerous first-row transition metal VO3 [39-47] and MoO,> [48]
compounds which encouraged us to explore transition metal-based selenium(IV) oxyanions

compounds and perform detailed physical property studies. [49-51] The realization of selenium(IV)
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oxyanions compounds targeting exotic magnetic properties has been very limited and only a
handful of reports are available in the literature. Furthermore, selenium can adapt [SeO3]* and
[Se,Os]- oxyanion configuration which can form a great number of different structural
arrangements in extended solid structures providing a rich and diverse crystal chemistry. Therefore,
we now extend our hydrothermal synthesis to scrutinize [SeO;]-based transition metal compounds
and perform detailed physical property characterizations and magnetic structure determination
using neutron diffraction searching for novel magnetic ground states. To give one example,
recently we performed comprehensive magnetic and neutron diffraction studies on 7M5(SeOs3);
H,O (TM = Mn, Co, Ni) compounds which exhibited tunable magnetic ground states with
metamagnetic transitions. [48]

In this paper, we report the hydrothermal synthesis of NaCo,(SeO;),(OH) single crystals and a
comprehensive characterization using both bulk probes and neutron scattering techniques.
Hydrothermal synthesis of both NaCo,(SeO;),(OH) (Pbnm) and NaZn,(SeO3),(OH) (Pnma) were
reported previously. [52-53] The magnetic phase diagram of the system was studied using multiple
experimental methods including magnetic susceptibility, isothermal magnetization and specific
heat. Magnetic susceptibility and heat capacity measurements reveal the presence of two
competing magnetic transitions which is very unusual for this type of sawtooth oxyanion
compounds while isothermal magnetization displays a field induced metamagnetic transition.
Temperature dependent neutron powder diffraction was used to determine the magnetic states
associated with each of the two magnetic transitions showing that below the first transition only
some of the Co sites order with the second transition leading to ordered magnetic moments on both
Co sites. Inelastic neutron scattering measurements over a broad range of energy transfers reveal

crystal field levels indicative of a spin-orbital entangled J.s = 1/2 state. Measurements at low
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energy transfers show spin-wave excitations which only become well defined below the second
transition with only a diffuse signal observed between the first and second transition temperatures
consistent with the partial ordering found in the diffraction measurements. Together these results
suggest a complex magnetic phase diagram with evidence of spin-orbital entangled J ¢ = 1/2 state
for Co?" in NaCo,(SeO3),(OH).

2. Experimental Section

2.1 Hydrothermal Synthesis of NaCo,(Se03),(OH)

NaCo,(SeO;),(OH) was synthesized using a low-temperature hydrothermal method. Here, we used
two different synthesis methods to grow sizable single crystals for single crystal X-ray diffraction
and a bulk microcrystalline sample to perform the physical property characterization and neutron
scattering experiments. In the first method, a total of 0.4 g of NaHCO3, Co(OH), and H,SeO; were
mixed in a stoichiometric ratio of 5 : 2: 2 with 8 mL of water and loaded into a Teflon-lined
stainless-steel autoclave which was then well sealed. The reaction mixture was heated at 200 °C
for 7 days. After the reaction, columnar crystals (0.2 mm, Figure SI 1) were recovered using
suction filtration by washing with de-ionized water and acetone. The yield of this method was very
low and also grew other impurity phases. Therefore, a different approach was employed to grow a
high-yield of micro-crystalline samples of NaCo,(SeOs),(OH). In this method, a total of 1.2 g of
NaHCOs;, Co(OH), and H,SeO; were mixed in a stoichiometric ratio of 1 : 2 : 2 with 12 mL of
water and loaded into a Teflon-lined stainless-steel autoclave, sealed well and then heated at 200
°C for 14 days. After cooling to room-temperature, a purple color microcrystalline sample was
recovered using filtration. Several sets of reactions were performed to obtained 5 g of powder
sample to perform the neutron powder diffraction experiments. Purity of the samples were checked

using the powder X-ray diffraction method.
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2.2 Single Crystal X-ray Diffraction

Single crystals of NaCo,(SeO3),(OH) were sonicated in water to remove any surface impurities
before determining the crystal structure using single crystal X-ray diffraction (SXRD). The SXRD
was performed by Bruker Quest D8 single-crystal X-ray diffractometer. The data were collected
at room temperature utilizing a Mo Ka radiation, A = 0.71073 A. The crystal diffraction images
were collected using ¢ and w-scans. The diffractometer was equipped with an Incoatec IuS source
using the APEXIII software suite for data setup, collection, and processing. [55] The structure was
resolved using intrinsic phasing and full-matrix least square methods with refinement on F2.
Structure refinements were performed using the SHELXTL software suite. [56] All atoms were
first refined with isotropic displacement parameters which were then converted to anisotropic
displacement parameters and allowed to refine. Additionally, energy-dispersive spectroscopy
analysis (EDS) was performed using a Hitachi S-3400 scanning electron microscope equipped
with an OXFORD EDX microprobe to confirm the elemental composition in single crystal
samples.

2.3 Powder X-ray Diffraction

Room-temperature powder x-ray diffraction data were collected using a PANalytical X’Pert Pro
MPD diffractometer with Cu Kal radiation (A= 1.5418 A). PXRD pattern of ground single crystals
samples were collected to confirm the purity of the samples and Figure SI2 shows the powder
patterns of NaCo,(SeOs),(OH).

2.4 Magnetic Property Characterization

Temperature-dependent and field dependent magnetic susceptibility measurements were
performed using a Quantum Design Magnetic Property Measurement System (MPMS). Here, a

ground single crystal sample was pressed into a 1/8 inch pellet and affixed to a quartz rod using
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GE varnish. The temperature dependent magnetization measurements were carried out using 6.2
mg pellet from 2 to 350 K in an applied magnetic field of up to 50 kOe. Additionally, isothermal
magnetization measurements were performed between 2-100 K up to a 60 kOe magnetic field. The
heat capacity (C,) of the sample was measured using a Physical Property Measurement System
between 2-50 K under 0 and 110 kOe applied magnetic field.

2.5 Neutron Scattering

Neutron powder diffraction measurements were performed on a NaCo,(SeO;),(OH)
polycrystalline sample, obtained from ground single crystals using the HB2A Powder
Diffractometer at High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory.[57]
Diffraction patterns were collected using the open-21'-12' collimator settings (for pre-
monochromator, pre-sample and pre-detector collimation, respectively) and with both 1.54 and
2.41 A incident wavelength settings to optimize both broad ¢ coverage as well as access low
scattering angles. A powder sample with a total mass of approximately 5 g was loaded into a
cylindrical aluminum can, placed inside an orange cryostat. Data were collected at various
temperatures in the 1.5-150 K range. Inelastic-neutron-scattering (INS) measurements were
performed on the same powder sample using the HY SPEC spectrometer operated with the incident

energies £; =25 and 3.8 meV and a Fermi chopper frequency of 360 Hz.

Page | 8



The FullProf Software Suite was used to perform the structural and magnetic structures

refinements. [58] Symmetry allowed magnetic structures were explored using representational

T=150K o lobs
. Icalc
lobs-Icale
— I Peak pos
= I Al
<
p—
>
.-
w
o=
Q
-~
=
— o
M renm IHHIIIIIH\I\I\IHIIII\I\IIIII\I\IIIIIIIII\MIIIIII\IIIIIllIIIII-III\I-II
o (. ‘“I. (| | 11
- R e § ol i
1 2 3 5 6 7

4
0 (A"

analysis with the program SARAA [59] and magnetic symmetry analysis using magnetic space
groups was performed using the Bilbao Crystallographic Server [60-61]. The INS data reduction
and visualization were done with the MANTID [62] software Server Spin-wave calculations were
performed using linear spin-wave theory as implemented in SpinW. [63].

Figure 1. The Rietveld profile fit of the neutron powder diffraction data collected on HB2A using
L =1.54 A at 150 K. The refinement was performed using a structural model with orthorhombic

symmetry in the Pnma (n0.62) space group. No evidence of any impurity phases was detected

within the instrument sensitivity. The refined parameters are R,,,(%) = 2.26, a = 13.2299(2) A, b
=6.02287(9) A, ¢ =8.32157(3) A.
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Table 1. Crystallographic data of NaCo,(SeOs),(OH) determined by

diffraction.

single crystal X-ray

empirical formula NaCo,(Se0;),(OH)
formula weight (g/mol) 411.78

crystal system orthorhombic
space group, Z Pnma (n0.62), 4
Crystal dimensions, mm 0.08 x 0.02 x 0.02
T,K 298

a, A 13.2373(4)

b, A 6.0322(2)

c, A 8.3197(2)
volume, A3 664.33(3)
D(calc), g/cm?) 4117

4 (Mo Ka), mm! 16.007

F(000) 760

Tmax, Tmin 1.0000, 0.6887

20 range 2.89-30.31
reflections collected 7327
data/restraints/parameters 659/1/74

final R [I> 26(])] Ry, Ry»

0.0138, 0.0349

final R (all data) Ry, R

0.0160, 0.0369

GoF

1.086

largest diff. peak/hole, e/ A3

0.0380/-0.498

Table 2. Fractional atomic coordinates and isotropic displacement parameters (A2) of

NaCoz(SeO3)2(OH).

Atom Wyckoff X z Ueq

Na(1) 4c 0.2515(1) 0.2500 -0.1288(2) 0.0187(4)
Co(1) 4c 0.1129(4) 0.2500 0.2124(7) 0.0102(2)
Co(2) 4b 0.5000 0 0 0.0096(2)
Se(1) 4c 0.3292(3) 0.2500 0.2251(5) 0.0134(2)
Se(2) 4c -0.0249(3) 0.2500 -0.1195(5) 0.0095(4)
o) 4c 0.3981(2) 0.2500 -0.0372(4) 0.01094)
02) 4c 0.3912(2) 0.2500 0.0431(3) 0.0112(4)
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0(3) 4c 0.0899(2) | 0.2500 -0.0323(4) | 0.0172(4)
0(4) 8d -0.0146(1) | 0.0302(4) | -0.2470(2) | 0.0133(4)
0(5) 8d 0.2455(1) | 0.04134) [ 0.1955(3) | 0.0194(5)
H(1) 8d 0.343(3) 0.2500 0.029(6) 0.048(4)

Table 3. Selected bond distances (A) and angles (°) of NaCo,(SeO3),(OH).

Co(1)Oq Co(2)O¢
Co(1)-0(1) 2.008(3) | Co(2)-O(1)x2 |2.047(2)
Co(1)-0(3) 2.058(3) | Co(2-0(2)x2 |2.116(2)

Co(1)-0(4) x 2 2.153(2) | Co2 0@ x2 |[2.1212)
Co(1)-0(5) x 2 2.165(2)

Se(1)04 Se(2)03
Se(1)-0(2) 1.722(3) | Se(2)-0(3) 1.685(3)
Se(1)-O(5) x 2 1.695(2) | Se(2)-0(4)x2 | 1.703(2)

Co(1)-0(1)-Co(2) | 101.38(1) | Co(1)-"Co(2) | 3.199(5)
Co(1)-0(4)-Co(2) | 96.92(1) [ Co(2):"Co2) | 3.016(3)
Co(2)-0(1)-Co(2) | 94.93(1)
Co(2)-0(2)-Co(2) | 90.90(1)

3. Results

3.1. Crystal structure of NaCo,(SeO3)(OH)

The obtained columnar NaCo,(SeOs),(OH) crystals with an average length of ~0.2 mm were used
for SXRD measurements (Figure SI1). The SXRD analysis confirms that NaCo,(SeOs),(OH)
crystallizes in orthorhombic crystal system with space group of Pnma (No. 62) with unit cell
parameters a = 13.2373(4) A, b = 6.0322(2) A, ¢ = 8.3197(2), V = 664.33(3) A3. The detailed
crystallographic data are reported in Table 1-2. The structure contains one symmetry unique Na*,
two Co?*, two Se**, five O* and one H" ions. The two Co?* are in 4¢ (0.1129(3), 0.2500, 0.2124(7))
and 4b (0.5, 0, 0) sites respectively, and form CoOg-octahedra (oct). Two Se-sites (4c-sites) bind
with three oxygen atoms by forming [SeOs] units. A projection of the structure of

NaCo,(Se0;),(OH) that displays the stacking of Co—O—Co sawtooth chain in the crystallographic
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ac-plane is shown in Figure 2a. The sawtooth chains are interconnected via [SeOs] groups along
the a- and c-axes. Moreover, along the ab-plane the sawtooth chains pack in a zigzag fashion while
changing the pattern between nearest neighbor chains (Figure SI13). Compared to other sawtooth
oxyanion compounds, NaCo,(SeO;),(OH) possess an overall 3D structure made from CoOg-oct
and [SeO;]-units. As seen in Figure 2b, the Co(1)Og-oct share edges with two Co(2)Og-oct to form
the triangular units in the sawtooth chain. These triangular units run up and down along the b-axis
forming the sawtooth chain. Within each Cos—triangle, one Co(1)O¢-oct share edges with two
Co(2)Og4-oct via O(1), O(3) and O(5) and can be best described as [Co3;043] triangular units with
O(1) serving as the u3-oxo vertex which also binds to H by forming the only -OH groups in the
structure, Figure 2b.

A summary of the Co—O, Se—O bond distances and Co—O—Co bond angles are given in Table 3.
The six coordinate CoOg units in NaCo,(SeO3),(OH) possess an average Co—O distance of
2.105(3) A, which is comparable to the expected sum of the Shannon crystal radii, 2.145 A, for a
6-coordinate high spin Co?" and O*. [64] The uz-oxo bonds Co(1)-O(1) and Co(2)-O(1) are
2.008(3) and 2.047(2) A, respectively and the resulting Co—O—Co bond angles for the edge-sharing
connections of the CoOg groups range from 90.90(1)° to 101.38(1)°. The Co—O interatomic
distances range from 2.008(3) A to 2.165(2) A of Co(1)O¢-oct and 2.047(3) A to 2.121(2) A of
Co(2)O¢-oct, respectively indicating a high degree of distortion. The Co(1)-Co(2) (J,y coupling)
and the Co(2)-Co(2) (Ji» coupling) distances are 3.199(5) and 3.016(3) A, respectively, as
highlighted in Figure 2c. The bond angles of Co(2)—O(1)—Co(2) and Co(2)-O(2)—Co(2) of the
base-base super exchange interaction pathways are 94.93(1)° and 90.90(1)°, respectively, while
the base-vertex angles of Co(1)-O(1)-Co(2) and Co(1)-O(4)—Co(2) are 101.38(1)° and 96.92(5)°,

respectively. The sawtooth chains are only ~5.5 A apart, which is close enough to potentially

Page | 12



allowing super-super exchange interactions between the chains. Therefore, in addition to super-
exchange pathways via Co—O-Co connectivity in sawtooth chains, super-super exchange
pathways via [SeOs] groups are possible, potentially leading to complex magnetic properties due

to competing interchain interactions.

3.016(3) A

Figure 2. (a) Partial polyhedral view of NaCo,(SeOs),(OH) projected along the b-axis, showing
packing of Co—O—Co sawtooth chains on the ac-plane. The Na™ ions reside inside the channel
structure which propagate along the b-axis. (b) Partial structure of Co—O—Co sawtooth chains made
from edged sharing CoOg octahedra along the b-axis. (c) The unequal base-base (Jy,) and base-
vertex (J,y) exchange interactions are shown using the solid purple line. The Co(1)—Co(2) and the
Co(2)-Co(2) distances are 3.199(5) and 3.016(3) A, respectively.
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3.2 Magnetic Properties of NaCo,(Se03),(OH)

The temperature dependent magnetization, y = M/H of NaCo,(SeO3),(OH) was measured on both
zero-field cooling (ZFC) and field cooling (FC) modes between 2-350 K using ground single
crystals. The magnetic susceptibility measured with an applied magnetic field of 10 kOe is shown
in Figure 3a which exhibits a sharp rise below 20 K and reaches to a maximum at ~11 K (77)
suggesting a ferromagnetic-type transition. The inverse magnetic susceptibility in the
paramagnetic region for applied magnetic field = 10 kOe can be fit using the Curie-Weiss model
M/H = C (T-0). As shown in Figure 3a, the fit above 150 K resulted an effective moment of 4.84
ug/Co and a Weiss temperature of -9 K. The effective magnetic moment is higher than the spin
only value of Co?" with § = 3/2, (i.e. pegr = 3.8 up). This could be due to the significant orbital
contribution since orbital moments are unquenched for Co?" in octahedral environment (f,,°¢,2, S
= 3/2, L = 3). The negative 6., confirms the overall antiferromagnetic nature of
NaCo,(SeO;),(OH). It is noteworthy that the frustration index f = |6,/T| is ~1 even though Co(1)
and Co(2) form a geometrically frustrated triangular lattice. This frustration index is very small
compared to our previously reported sawtooth chain systems, Rb,Fe,O(AsO,), (f = ~20) [32] and
Rb,Mn3(Mo0O,)3;(OH), (f = ~24). [12]

Figure 3b shows the temperature dependence of the magnetic susceptibility (y = M/H) for T'< 25
K collected under various magnetic fields (H = 100 Oe, 1 kOe, 10 kOe, 30 kOe and 50 kOe) for

both ZFC and FC measurement protocols focusing on the low temperature region. For a 100 Oe
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applied magnetic field, the FC and ZFC curves bifurcate at 11 K (77), each exhibiting a broad
hump before starting to go down at 6 K. Below 6 K, the magnetic susceptibility continuously drops
with lowering temperature and at 2 K it reaches very close to zero. This downturn in the magnetic
susceptibility at 6 K can be identified as a second magnetic transition, 7, = 6 K. This is further
confirmed by heat capacity and neutron diffraction experiments as will be discussed in later
sections. Furthermore, increasing the magnetic field above 100 Oe suppresses the magnitude of
this plateau-like feature and broadens it pushing the second transition to lower temperatures as
well as decreasing the separation between FC and ZFC measurements. Finally, at an applied field
of 10 kOe the bifurcation between FC and ZFC measurements disappears. As displayed in Figure
3b inset, at applied magnetic fields of 30 and 50 kOe, the magnetic susceptibility starts to increase
below 6 K potentially suggesting another field induced transition near 7,. This was clearly
observed in in our heat capacity measurements. It is important to mention that the occurrence of
two successive magnetic transitions in transition metal-based oxy-anion sawtooth compounds is
very rare. Similar consecutive transitions were observed in one of our half sawtooth compounds,
Rb,Mn;(Mo0O,4);(OH), where it shows a transition from a paramagnetic to an incommensurate
phase below 4.5 K followed by another commensurate antiferromagnetic transition below 3.5 K.

[12]
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Figure 3. Magnetic susceptibility, y, and inverse magnetic susceptibility, 1/y, as a function of
temperature, 7, measured using ground single crystal sample of NaCo,(SeOs),(OH) measured at
10 kOe. (b) Magnetization curves of NaCo,(SeO;),(OH) measured in different magnetic fields (H
=100 Oe — 50 kOe) below 25 K.

Figure 4a shows the isothermal magnetization measured at various temperatures, 7= 2, 4, 5, 10,
15, 20 and 100 K up to 60 kOe. At 2 K, the isothermal magnetization curve exhibits hysteresis
which demonstrates the presence of a ferromagnetic component to the magnetic structure, Figure
4b. In addition to a hysteresis in the ascending and descending magnetization curves, an anomaly
can be seen at H. = 1.3 kOe which is likely related to a spin flip transition. This field induced
transition at 1.3 kOe agrees with our magnetic susceptibility data as shown in the inset of Figure

3b where the magnetic susceptibility peak starting to disappear at 1 kOe. After the field induced

transition, the magnetization follows a concave curvature with increasing field and reaches a
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maximum of 1.2 pg/Co at 60 kOe which is smaller than the fully saturated moment of high-spin
Co?*. The field induced transition and the concave nature of the magnetization curve possibly
indicate a canted AFM phase or a partially polarized Co-spin state in NaCo,(SeOs3),(OH). The
field induced transition at H. = 1.3 kOe disappears with increasing temperature however, the

magnetization curves exhibit a curvature behavior even beyond 7 as displayed in Figure 4a.

(3)1'2_

0.0
0 10 20 30 40 50 60
H (kOe)
10 B) 25.(0)
g 0.5 —( 57 g ]
E 0.0 / aio.zt— /
= / 2k ] 2K
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2 0 2 0o 1 2 3 4
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Figure 4. Isothermal magnetization data obtained at 2—100 K up to 60 kOe. (b) A blow-up region
of the hysteresis at 2 K with ascending and descending magnetization curves. (c¢) The

magnetization data measure at 2 K with field increasing which indicates the field induced transition
at 1.3 kOe.

3.2 Heat Capacity of NaCo,(Se0O;),(OH)

The temperature dependent heat capacity of NaCo,(SeO3),(OH) was measured in applied fields of
up to 110 kOe using a 2.6 mg pressed pellet, as shown in Figure 5. At zero applied magnetic field

a sharp A-anomaly peak at 77 = 11 K was observed which agrees well with our magnetic
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susceptibility data (Figure 5). Interestingly, another broader transition was observed below 6 K
which reaches to a maximum at about 3.8 K (Figure 5 inset). As displayed in Figure 5, applied
magnetic fields of magnitudes less than H, has very little effect on both the magnitude and the
peak position in heat capacity at 7. With further increasing magnetic field, the A-anomaly becomes
much broader over a wide range of temperatures. Apart from this field induced transition at 77, a
very interesting and complex field dependent behavior was observed at 7, up to 110 kOe. Starting
from 30 kOe applied magnetic field, a small peak was appeared at 2.5 K which starts to grow with
applied magnetic field up to 110 kOe. First, this new peak moves to higher temperatures at an
applied magnetic field of 50 kOe, then it starts to move to lower temperatures at about 90 kOe
indicating a complex magnetic phase diagram with non-monotonic field dependence. This field
induced transition was also observed in our magnetization data, manifesting as an increase in the
magnetic susceptibility at 7, as shown in Figure 3b inset. Neutron powder or single crystal
diffraction in applied magnetic fields will be necessary to understand the field induced magnetic
ground state at 7.

To calculate the magnetic entropy, the heat capacity data of NaCo,(SeO;),(OH) above 30
K were fitted by an EinsteintDebye model as the lattice contribution (C;). The magnetic
contribution, Cy,, was calculated as the difference of C,-Cj, and the magnetic entropy, Sv, was
estimated by integrating Cp,,/7dT. As displayed in the inset of Figure 5, the calculated magnetic
entropy is Sy = 5.92 I mol K, representing 51% from the entropy AS = RIn(25+1) = 11.5 J mol
K for Co?" in § = 3/2 spin state, but just slightly larger than what is expected for an effective spin
Ser= Y2, RIn2 = 5.76 mol K. However, a more careful lattice contribution subtraction using a
nonmagnetic analogue of NaCo,(SeO;),(OH) such as NaZn,(SeOs),(OH) is necessary to increase

the confidence of the entropy value.
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Figure 5. The specific heat curves of NaCo,(SeO;),(OH) obtained for applied magnetic fields in
0 — 110 kOe range. A significant influence of the external magnetic field on both 77 and T,
transitions is observed. The insets show a zoomed view of the two magnetic transitions measured
at H= 0T, and the evaluated magnetic entropy of NaCo,(SeOs3),(OH), respectively.

3.5 Magnetic Structure of NaCoy(Se03),(OH)

Neutron powder diffraction was performed using the HB-2A powder diffractometer at the High
Flux Isotope Reactor, Oak Ridge National Laboratory.[57] The crystal structure of
NaCo,(Se0s),(OH) was confirmed by performing Rietveld refinements using neutron powder
diffraction data collected above the signals observed in the bulk probes at 150 K (Figure 1). Here,
data was collected using the 1.54 A wavelength to cover a broader range of scattering angle and
collect more nuclear peaks for use in the nuclear refinement with the Ge(115) monochromator.
(the refined parameters are available in Table SI1). Figure 6a displays NPD data collected at 30, 6
and 1.5 K. As shown additional peaks are seen in both the 6 and 1.5 K data consistent with both
the 7} and 7 transitions identified in the bulk measurements indicating two distinct successive
magnetic transitions. We note that for the 6 K data, due to the temperature being too close to the

second transition temperature (7) the NPD collected at 6 K also includes a small contribution

from the lower temperature magnetic phase. However, as shown in order parameter scans in Figure
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6b the two sets of peaks clearly display different temperature dependencies and so are attributable
to separate phase transitions. The first magnetic transition (77) produces magnetic reflections on
positions indexed by the nuclear unit cell, thus indicating an ordering vector (k) of £ = (0, 0, 0).
However, additional magnetic peaks are observed in the 1.5 K data that can be indexed by the
wave vector k = (1/2, 0, 0). Figure 6b presents the temperature dependence of the (101) Bragg
peak intensity (peak at 0~0.89 A-1). On cooling, the (101) peak intensity first increases at 11 K
starting from a background equivalent count rate until it reaches a maximum at 8.5 K, and then
quickly decreases at ~6 K down to a constant value that corresponds to roughly one third of its
maximum value. On the other hand, the (3/2, 0, 0) magnetic peak (at 0~0.71 A-!) appears at about
6 K and increases until it saturates at about 3 K. These order parameter measurements agree with
the magnetic and heat capacity data.

To solve the magnetic structure of the first ordered state (7 < T < T,), we analyzed the NPD
measured at 6 K. The Bilbao Crystallographic server was utilized to find the maximal magnetic
space groups allowed from the parent Pnma crystal structure and the k; = (0, 0, 0) propagation
vector. Of the allowed magnetic space groups (MSG) our analysis found Pn'ma' (#62.448) to
provide the best fit to the observed diffraction pattern. According to our model, at 7; only the
Co(2) site orders while the Co(1) stays paramagnetic, Figure 7. The refined magnetic structure
reveals that the Co(2) spin orders in a canted ferromagnetic structure with the net magnetization
aligned parallel to the b-axis, Figure 7a top panel. The ordered component along the b-axis is
aligned ferromagnetically both within the sawtooth chain and between the neighboring chains. In
contrast, the smaller components along the a and ¢ directions are alternating their directions both
within and between the chains leading to no net moment in these directions. The refined magnetic

moment components are m, = 0.72(4) ug, mp =2.56(1) ug and m. = 0.45(3) ug for Co(2) and yield
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a total static moment of 2.7ug. This is less than the fully ordered spin only value of Co?" with S =
372, Per= 3.8 Up.

With a model for the higher temperature structure we turn now our attention to the additional
magnetic reflections corresponding to k, = (1/2, 0, 0) that were seen to arise below 6 K, noting that
the magnetic peaks corresponding to k; = (0, 0, 0) remain present but weaken in intensity. Of the
allowed magnetic symmetries compatible with both wavevectors (k;, k;), the model based on
Pn'a2,' (#33.146) space group in a unit cell of (2a,b,c) is best able to model the 1.5 K data. In this
model Co(1) and Co(2) moments order with total magnitude of 1.32 ug (m, = 0.60(1) ug, m;, = -
0.2(1) ug, m. = 1.15(4) pg ) and 2.97 ug (m, = 2.09(3) ug, m, = 1.46(1) pg, m. = 1.53(1) up),
respectively. As such, the magnitude of the Co(1) moment that only orders below 7 is significantly
smaller than the Co(2) moment. We also note that the m;, components are arranged in ferromagnetic
manner, following the k; = (0,0,0) wavevector, while the m, and m. components are arranges
antiferromagnetically according to the k, = (1/2, 0, 0) propagation vector for both sites, The
negative sign of the my, for Co(1) denotes an opposite alignment of this component to the m;, of the
Co(2) leading to ferrimagnetism along the b-axis. A graphical representation of the proposed
magnetic structure is given in Figure 7 bottom panels. The Co(2) moments feature a colinear
ferromagnetic arrangement inside the chain and are canted away from the plane of the triangular
chain. The Co(2) moments from neighboring chains have a b-axis component aligned
ferromagnetically while the a- and ¢- components are fully compensated. In contrast, the Co(1)
magnetic moments lies in the plane of the Co—O—Co triangles (Figure 7b bottom panel), with the
predominant a- and c- components compensated among the neighboring chains. This produces a
dominant AFM nature to the NaCo,(SeO;),(OH) below T5. This behavior appears consistent with

our magnetization data and the heat capacity, however, the underlying force of these two magnetic
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transitions is still unclear. Considering the stability of the two separate magnetic structures, we
could suggest that at lower temperatures next nearest neighbor (NNN) interactions become
stronger than the nearest neighbor (NN) interaction driving the overall magnetic structure to an
AFM structure. As previously stated, within the triangular [Co;0;3] motif the NN Co—O—Co angles
range from 90.90(1)° to 101.38(1)° with NN distances of 3.199(5), J,, and 3.016(3) A, Ji». Since,
the bond angles are close to 90°, a dominant FM interaction can be expected within the Co—O—Co
sawtooth chain according to the Goodenough Kanamori rule. [65-66] In the overall structure, the
individual Co—O—Co chains are interconnected via [SeOs] groups to form a 3D structure.
Therefore, Co—-O—Se—O—Co interactions (NNN) are likely relevant for the magnetic behavior at

lower temperature.
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Figure 6. (a) Neutron powder diffraction patterns of NaCo,(SeOs),(OH) at 30, 6 and 1.5 K
showing the appearance of new peaks below 7 and 7, transition temperatures. (b) The intensities
of (1,0,1) and (3/2,0,0) peaks as a function of temperature. NPD data refinements at 6 K (c) and
1.5 K (d). In both panels the data, model, difference, and phase peak indexes are indicated by red
circle, black line, blue line, and green tick marks, respectively. The gaps in the patterns are due to
regions excluded to remove strong Al peaks from the sample can.
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Figure 7. The proposed magnetic models for the two magnetic transitions, 11 K (77) and 6 K (7)
are visualized in two different crystallographic orientations. The magnetic structure at 11 K is
described within the same unit cell as the nuclear structure, whereas the structure at 6 K is doubled
along the a-axis (i.e. 2a, b, c¢).

3.6 Crystal field excitations

Neutron inelastic scattering data on polycrystalline NaCo,(SeOs),(OH) measured at 1.5 K and 50
K with an incident energy, E; =25 meV is displayed in Figure 8. The spectrum consists of two flat
excitation bands centered at about at 7 and 17 meV, which broaden progressively as temperature
increases. The |Q|-integrated cuts over the range 1 - 2.5 A~!, shown in Figure 8c, suggest that each
band is structured into at least two distinct excitations within the experimental resolution. The
instrumental energy resolution (the full width at half maximum) is represented by vertical blue
lines in Figure 8c. The decay of intensity with the momentum transfer as well as the temperature

dependence demonstrate the magnetic nature of the excitations. The presence of pair excitations
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in each band is not surprising considering the existence of two distinct Co>* magnetic sites in our
material.

The d’ electrons of Co?" in an octahedral crystal field can possess a multiplet state with spin S =
3/2 and effective orbital moment L.g= 1. The spin-orbit coupling (Hso=2 L-S ) can split this state
into three states: a Jogr= 1/2 ground state, and J.¢= 3/2 and J.¢=5/2 excited states, that are separated
in energy by 3/2 A and 5/2 A, respectively. The observation of crystal field excitations between the
Jeir= 1/2 ground state and the excited states is common in cobalt compounds and provides support
for the presence of the spin-orbital entangled state [67-71]. The deviation from ideal octahedral
environment produces a further split of the J.¢ = 3/2 and 5/2 excited states. Moreover, the long-
range magnetic order below 7y creates an internal molecular field, which induces a Zeeman
splitting of the J.¢ = 1/2 manifold.

The inelastic spectrum of NaCo,(SeOs),(OH) is reminiscent to the spectra observed for a-CoV,04
[68] and a, y-CoV;0g [70] that show two bands of excitations at ~ 5 meV and ~ 25 meV, which
are due to transitions within the J.; = 1/2 manifold and between the J.s = 1/2 and J.p = 3/2
manifolds, respectively. Similarly, we associate the flat band at 17 meV of NaCo,(SeOs),(OH)
with the spin-orbit excitations between the J.¢ = 1/2 and J.i = 3/2 manifolds in the two distinct
Co?* sites. Furthermore, the fact that the intensity of the 7 meV excitation is significantly reduced
at 50 K, above the magnetic order transition, suggests that this excitation is associated with the
splitting of the lowest-energy ground-state J.¢r = 1/2 doublet due to the molecular field induced by
magnetic order. Hence, the observed spin-orbit excitations support the view that Co*" ions of

NaCo,(Se0s),(OH) have a spin-orbital entangled J.¢r = 1/2 state.
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Figure 8. Inelastic neutron scattering data obtained with incident energy E; = 25 meV at two
temperatures (a) 1.5 K and (c) 50 K. (c) |QJ-integrated cuts (|Q| = [1 - 2.5] A™!) of inelastic
scattering showing the presence of two bands of crystal field excitations. Vertical blue lines in (c)
indicate the instrumental energy resolution (full width at half-maximum).

3.7 Spin-wave excitations

The low-energy excitation spectrum of NaCo,(SeOs3),(OH) was characterized using the HYSPEC
spectrometer with the incident energy E; = 3.8 meV. At low temperature ( 7= 1.5 K), the powdered
averaged spectrum of the magnetically ordered state, shown in Figure 9a, features two well-defined
excitation modes: one flat mode located at about 1.1 meV and a second dispersive mode that
emerges at the momentum transfer O = 0.8 A1, corresponding to the (3/2, 0, 1) magnetic peak,
and extends up to about 0.6 meV. At 8 K, in the partially ordered state, 7,< T < T, both excitation
modes vanish, and only diffuse scattering is observed, Figure 9b.

An attempt of describing the spin-wave spectrum was made using a Heisenberg Hamiltonian
model which includes three intrachain and two interchain exchange parameters, as depicted in
Figure 9d. For the intrachain couplings we considered the exchange interactions between the
nearest-neighbor Co(2) atoms forming the triangles base (J;5), the interaction between the base
and vertex positions Co(1)—Co(2) (Juy), as well as the next-nearest neighbor base-vertex interaction
(Jpv2), Figure 9d. The long-range magnetic order is stabilized by additional couplings between
adjacent sawtooth chains (J,; and J,;,), that involve super-exchange pathways via [SeOs] groups
(Co(1)-0-Se—0O—Co(1) or Co(1)-O-Se—O—Co(2)). The spin-wave spectrum was calculated using
linear spin wave theory as implemented in the SpinW program. The analyses indicate that the main

characteristics of excitation spectrum can be reproduced using the following parameters: S-J,, =
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0.15 meV, S-J, = 0.4 meV, S-Jp,,=0.1 meV, S-J,;=-0.05 meV, S-J,, =-0.03 meV. The positive
J values correspond to antiferromagnetic coupling while the negative represent a ferromagnetic
coupling. We found that the ferromagnet interchain couplings (J,; and J,;) play a key role in
stabilizing the AFM order with the wavevector k = (1/2, 0, 0). The large ratio J;,, J,, could be due
to the difference in Co—O—Co bond angles associated with the two exchange pathways. The
Co(1)-0O—Co(2) angles (J;,) are ~ 91° and 95°, while the Co(2)-O—Co(2) (/) angles are 97° and
100.5°. This simple Heisenberg Hamiltonian model is successful in reproducing the energy
positions of two spin-wave modes but is deficient in describing the correct Q dependence of the
intensity for the low-energy mode (see Figure 9c¢). Moreover, the model fails in explaining the
ferromagnetic components along h-direction, as well as the orthogonal arrangement between Co(1)
and Co(2) moments. Considering the significant information loss in the powder averaged inelastic
data, the number of parameters that can be tested simultaneously is drastically limited. This
precludes the use of more complex models that include further neighbor interactions, biquadratic
coupling or anisotropic exchange interactions that are expected to arise from the strong spin-orbit
coupling in this compound. However, additional spin wave excitation studies using single crystals
are needed to look for firmer quantitative evidence of intrachain and interchain exchange

parameters of NaCo,(SeOs3),(OH).
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Figure 9. (a) Spin-wave excitation spectrum of measured at 1.5 K using £; = 3.8 meV. (b) Inelastic
spectrum measured in the partial ordered state at 8 K, (77 < T < T,) (c¢) Calculated spin-wave
spectrum using a simple Heisenberg Hamiltonian model that includes three intra-chain (Jyy, Job,
Juy2) and two interchain (J,,;, Jy;) exchange interactions. The magnetic exchange pathways are
shown in (d).

4. Conclusions

Novel magnetic materials with Co?" are promising candidates to study emergent physics since
unquenched orbital moments and large degeneracy of the orbitals could facilitate magnetic
frustration and anisotropy. The stereo active asymmetric selenite [SeOs;] group and CoOg-
octahedra can stabilize promising magnetic materials with enormous range of chemical bonding
modes. In this study we have examined a novel delta chain compound, NaCo,(SeO3),(OH) through
a combination of bulk magnetization measurements, neutron powder diffraction and inelastic
neutron scattering. Single crystals of NaCo,(SeO;),(OH) was synthesized using a hydrothermal
method. NaCo,(SeOs),(OH) consists of two crystallographically distinct Co?" sites (Co(1) and
Co(2)). These two distinct sites form sawtooth triangular 1D chains that propagate along the b-
axis. The chains are interconnected via non-magnetic [SeO3] groups producing a 3D structure. Due

to the presence of two different crystallographic sites, two different nearest neighbor interactions
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form within the triangle between the base-base and base-vertex Co sites. Additionally, multiple
next nearest neighbor interactions are present via non-magnetic linker group, [SeOs].

Our macroscopic magnetic measurements and neutron powder diffraction data confirm that there
are two successive magnetic phase transition on cooling. The first transition is from a paramagnetic
phase to a canted FM phase at 77 = 11 K, described by a propagation vector of k; = (0, 0, 0). A
second magnetic transition occurs below 7, = 6 K going from FM to a canted AFM structure that
is defined by two k vectors: k; = (0, 0, 0) and &, = (1/2, 0, 0). Our proposed magnetic structure
model suggest that at 11 K, only the Co(2) site is magnetically ordered in an alternating canted
configuration about the h-axis, while the Co(1) site stays disordered. Below 6 K both Co(1) and
Co(2) order and form a canted AFM structure. Within the delta chain, Co(1) and Co(2) form a
complex spin topology with the Co(1) moment lying inside the sawtooth triangular plane and the
Co(2) spin canted out of the plane. These magnetic moments are fully compensated in the ac-plane
but remain uncompensated along the chain axis (b-direction). The ground state of Co*' was
elucidated by measuring the crystal field excitations using inelastic neutron scattering, which
supports the presence of J.¢ =1/2 state due to the unquenched spin-orbital coupling. Crystal field
excitation clearly reveals two transitions at 7 and 17 meV. The 17 meV transition is attributed to
the spin-orbit excitation between J.i; = 1/2 and J.i; = 3/2 states that characterize both Co?" sites.
The temperature dependence of the scattering suggests that 7 meV excitation is associated with
the splitting of the J.¢ = 1/2 doublet due to the molecular field induced by magnetic order. Low-
energy powder inelastic measurements revealed the presence of spin-wave excitations associated
to the lower temperature magnetically ordered state. The spin-wave spectrum contains a dispersive
excitation that extends up to about 0.6 meV and a nearly flat excitation mode centered at 1.1 meV.

A Heisenberg Hamiltonian model that includes three intrachain exchange interactions and two
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super-exchange interchain couplings is insufficient to describe the sequence in magnetic ordering
and the complex canted antiferromagnetic ground state. A more complete understanding of what
leads to these competing magnetic interactions would require a careful inelastic neutron scattering
experiment using aligned single crystals and we leave this to future neutron scattering work.

To conclude, our work highlights the complexity of frustrated magnetism emerging from weakly
coupled sawtooth chain in the Co**-based compound NaCo,(SeO3),(OH). Further single crystal
studies are necessary to develop a full understanding of this system. We hope that our study will
inspire the search for other Co?*-based sawtooth oxyanions structures based on phosphate,
arsenates and molybdates targeting new physics and potential applications. Collectively our results

highlight the complexity of magnetism in sawtooth structures.
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