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Outline

We consider solving the linear system of equations,
Ax = b,

where A is large and non-symmetric.

» Many applications: e.g., scientific/engineering applications when solving PDEs

» Communication-avoiding Krylov method:

- GMRES for solving large-scale problems

» Communication-Avoiding Preconditioners for CA methods

- A domain decomposition framework for CA preconditioning

» Hybrid CPU/GPU cluster implementation
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Communication-Avoiding Methods

» Communication:
- Moving data between levels of memory

- Moving data between processors in a network

» Communication-Avoiding: Reduce Communication (messages, volume)

- Not Communication hiding

» Improves Time to solution and 10000
Reduces energy consumption

» More important in future
architectures
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Communication-Avoiding Iterative Methods

>

Originally proposed 30 years ago for Conjugate Gradient (J. van Rosendale,
1983).

Chronopoulos and Gear - “s-step iterative methods” (1989)
R. Leland - The effectiveness of these methods (1989)

Walker - Implementation of the GMRES method using Householder
transformations (1988)

E. de Sturler and H. A. van der Vorst - GMRES and CG, basis vectors
(2005)

M. Hoemmen (2010) - TSQR, “Communication-Avoiding” methods

Two main problems:
- “Good” basis vectors (works for practical ‘s’)
- Lack of preconditioners (This talk)
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Preconditioners for Communication-Avoiding Iterative
Methods

» Preconditioners that are like SpMV or that add no communication
- Polynomial preconditioning, Sparse approximate inverse
- CA-ILU(0) (L. Grigori and S. Moufawad, 2013)
- Deflation based preconditioning (E. Carson 2014)

» Preconditioners that use low-rank like structures
- Need changes to how the matrix is stored and no known evaluation with
s-step methods
» Other related methods
- s-step GMRES as bottom solver for multigrid (IPDPS 14)

- Communication hiding pipelined Krylov methods do not have the
preconditioning problem (P. Ghyssels et al., 2013)

- Heirarchical Krylov Methods [L. McInnes et al.]
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Restarted GMRES with GPUs

1 Generate Krylov Basis on GPUs: O(m - nnz(A) + m2?n) flops

for j=1,2,...,m do
Sparse Matrix-Vector Multiply (SpMV (+ Precond)):
qj+1 = Aq;

Orthonormalization (Orth):
Qj+1 = Qi1 — Qi QT A4
end for
2 Solve Projected Subsystem on CPUs: O(m?) flops
small structured least-square problem

— restart with “best” initial vector q1 in Q1.m

» generating basis vectors dominates computational cost.
» distribute A and @ in a 1D block row among GPUs.
» redundantly solve least-squares by each process.
» both SpMV and Orth require “expensive” communication:

> point-to-point/neighborhood for SpMV  (inter-GPU).
> global all-reduces in Orth  (inter-GPU).

> data movements through local memory hierarchy (intra-GPU).

Domain decomposition based CA preconditioner 6/37



Communication-Avoiding Implementation of s-step GMRES

1.Generate Krylov Basis:
for j=1,1+s,...,mdo
Matrix Powers Kernel (MPK):
qi+1 = Aqg, for k=j,...,5+s—1

Block Orthogonalization (BOrth):
orthogonalize Qj 1.4 against Q1.;
Tall-skinny QR (TSQR):
orthogonalize Qj 1545
compute Hj.jts—1,j+1:5+s
end for
2.Solve Projected Subsystem on CPUs: ~ O(m?) flops.
structured small least-square problem

— restart with “best” initial vector q1 in Qi.m.

» replace SpMV and Ortho with MPK and BOrth+ TSQR.

» reduce comm by generating s vectors “at once”
(e.g., replace BLAS-2 with BLAS-3).
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Matrix Powers Kernel for a tridiagonal matrix

For a given starting vector q, compute Aq, A%q, ..., A°q (e, s = 4):

1. communicate required nonlocal elements for s-step between GPUs

2. apply s SpMVs with extra computation on shrinking ghost

- local submatrix is expanded with s-level ghost

— reduce inter-GPU latency by s (with redundant computation).
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

s
8@
» to compute local elements of qs+1,
one SpMV requires local and nonlocal 1-level ghost elements
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

» to compute local elements of qs+1,

two SpM Vs require local and nonlocal 2-level ghost elements.
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

» at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of qi

Domain decomposition based CA preconditioner 11/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

/'\ / ? / 3
b 6(‘1 1)

» at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of of qi

— compute local and 1-level ghost elements of qa
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

/'\ / ? / 3
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» at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements of g2

Domain decomposition based CA preconditioner



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

» at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements

— compute local elements of q3
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Our Matrix Powers Kernel Implementation with multiple GPUs

Initialize MPK:
set up communication pattern.
expand local submatrix with ghost elements, etc.

CA-GMRES with GPUs.
1. Generate Krylov Basis:
for j=1,14+s,...,mdo
MPK:
Inter-GPU Communication: each MPI process
1. CPU <+ GPUs using CUDA
2. CPUs «+— CPUs using MPI
3. CPU — GPUs using CUDA
GPU Kernel:
for k=1,2,...s do
SpMV with local and k-level ghost elements
end for
BOrth and TSQR.
end for
2. Solve projected system.

> currently optimized only for inter-GPU communication,
and not for intra-GPU communication
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Matrix Powers Kernel Performance on a node
Our MPK requires overheads, but reduces inter-GPU latency:
» additional memory to store “ghost” elements

» addition computation for SpMV with “ghost” elements

P potentially, increasing total inter-GPU communication volume.
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Integrating preconditioner into MPK
Apply Preco followed by SpMV at each step of MPK

fork=j,j+1,...,j+s—1do
Preco: qre1 := M tqp
SpMV: qr+1 := AQr+1

end for

» focus on right-preconditioning, generating H(AMil, qai)

- can be easily extended to left-preconditioning

> not increase inter-GPU comm from what is already needed by MPK
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Challenge: block Jacobi preconditioner increases communication

» each GPU Precon local elements of qi, solving its local sub-problem.

» SpMYV requires “preconditioned” s-level ghost elements of qi

— additional communication
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Challenge: block Jacobi preconditioner increases communication

6(01-72)

6(‘1 1)

» each GPU Precon local elements of qi, solving its local sub-problem.

> SpMYV requires “preconditioned” s-level ghost elements of qi

— additional communication
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Challenge: block Jacobi preconditioner increases communication

» Solution 1: consider 2 x s levels of ghost (Preco then SpMV)
“global” preconditioner, potentially large overhead e.g., CA-ILU(0) [Grigori et.al’14]

» Solution 2: consider what we can do without additional comm
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Domain Decomposition Preconditioner for CA-Krylov

» for 1st SpMV, neighboring GPUs require elements on 1-level underlap

- local elements reachable from other subdomains by one edge
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Domain Decomposition Preconditioner for CA-Krylov

» for 2nd SpM YV, neighboring GPUs require elements on 2-level underlap

- local elements reachable from other subdomains by two edges
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Domain Decomposition Preconditioner for CA-Krylov

Integor of s level underlap,
o subdomain 1 relative to
N subdomain 1
[°q
s level overlap,
relative to :
. Interior of
4 subdomain 1 q
© subdomain 2

In order to “localize” effects of preconditioner,

» form “interior” by removing s-level “underlap”

> apply “local” preconditioner on “interior” and “underlap/ghost,” separately
- ILU(k or 7), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”
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Domain Decomposition Preconditioner for CA-Krylov

Interior of
Subdomain 1

Interior of
Subdomain 2

In order to “localize” effects of preconditioner,

» form “interior” by removing s-level “underlap”

> apply “local” preconditioner on “interior” and “underlap/ghost,” separately
- ILU(k or 7), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”
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Domain Decomposition Preconditioner for CA-Krylov

For Precon at 1st step of MPK,

82

6(d’ 1)

> local preconditioning on interior and 2-level underlap/ghost of qi

- ILU(k or 7), SAI(k), Jacobi, GaussSeidel, etc. on interior
- diagonal Jacobi on underlap and 2-level ghost
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

82

6(d’ 1)

» SpMYV with local subdomain and 2-level ghost of q1
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Domain Decomposition Preconditioner for CA-Krylov

For Precon at 2nd step of MPK,

> local preconditioning on interior and 1-level underlap/ghost of qg

- ILU(k or 7), SAI(k), Jacobi, GaussSeidel, etc. on interior
- diagonal Jacobi on underlap and 1-level ghost
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

<

» SpMYV with local subdomain and 1-level ghost of q2
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

» apply SpMV with local subdomain and 1-level ghost

— compute local elements of q3
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Domain Decomposition Preconditioner for CA-Krylov

Summary: at jth step of MPK,
» effects of interior precond grows (i.e., sth to (s — j 4 2)th levels of underlap)

» underlap required by neighbors shrinks (i.e., (s — j + 1)th to 1st levels)

» no increase in inter-GPU communication

> any local preconditioner/solver on interior
- ILU(k or 7), SAI(k), Jacobi, Gauss-Seidel, etc.

» preconditioner on underlap/ghost
- diagonal Jacobi: interior precond propagates only within subdomain

- extension in current work
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Experimental Setup

>

>

graph partitioning (e.g., METIS) for load balance and small communication

local matrix reordering (e.g., METIS, RCM) for performance
(e.g., nested dissection for triangular solves on GPU)

matrix equilibration for numerical stability

Newton basis to enhance MPK stability, vi11 = Hf:l(A —0:)qi.
shifts 0; are Ritz values from first restart loop (GMRES)

Precon computed on CPU (e.g., ITSOL, ParaSail), and copied and
apply it on GPU (e.g., trsv/spmv of CuSPARSE)

Keeneland at Georgia Tech
each node has 2 x 6 Intel Xeon + 3 NDIVIA M2090.

Test matrix: PDE(a): n ~ 105, symmetric but can be indefinite
- larger a makes it more ill-conditioned

- « > 1 makes it indefinite
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CA-GMRES Performance (speedups vs. GMRES on one GPU)

4 —6— CA-GMRES(5,15,30)
—E— GMRES(30)
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Number of GPUs

» obtained speedups of up to 2.5
- more details in our IPDPS/SC’14 papers.
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Relative Residual Norm

Convergence Results
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» DD preconditioner improves the convergence
- faster convergence with a larger overlap

- slower convergence with a larger underlap
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=

Restart Cycle Time Breakdown

Il Preco, SAI(0)
I VPK(+Comm.)

3 6 9 12 15 18 21 24 27 30

Number of GPUs

> SAI(0) is used for PDE(1.0275)

» ILU(0) is required for Circuit_G3

CA-GMRES(1,8,30), Circuit_G3

Il Others
[EEBOrth+TSQR
[ Preco, ILU(0) []
Il MPK(+Comm)

Domain decomp
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Time to Solution Speedups vs. CA-GMRES

PDE(1.0275) G3_Circuit
75 T T T T T T T T T 35 T T T T T : : : :
—&— CA-GMRES(1,8,30), precond
GMRES(30), precond
3+ —S— CA-GMRES(4,8,30) H
—&— GMRES(30)
25 q
4 45 « ®
=3 2 25 p 8
S 3 /
° ° %
@ <
8 2] 8 /
Q Qs
[N 1 288 v
3 —&— CA-GMRES(1,10,60), precond ™ v &'J) 4
25 GMRES(60), precond q
A —6— CA-GMRES(2,10,60) ] 1 & = SOR
150 —H5— GMRES(60) i
¢
08B B8 F B
0 . . . . . . . . . 0 . . . I . . . . .
1 3 6 9 12 15 18 21 24 27 30 1 3 6 9 12 15 18 21 24 27 30
Number of GPUs Number of GPUs

> speedups of up to 7.5x over CA-GMRES without preconditioner

» speedups of up to 1.7x over GMRES with preconditioner

» Our MPK is not optimized on a GPU
» On GPUs, Ortho performs great, and SpMV/Preco can dominate
easily.
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Summary

» proposed domain decomposition preconditioners for CA-Krylov

> do not increase inter-process communication
> can use any solver on interior problem

> presented results of a block Jacobi like implementation

> diagonal Jacobi on underlap/ghost
> potential to improve convergence/ performance
- over precond GMRES or standard CA-GMRES

Future work

» improving performance

> utilizing CPU, partitioning, etc.
» underlap/ghost preconditioning

> more extensions (e.g., “flexible” preconditioner)
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Thank you!!
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

b(d,—z)

6(11, 1)

» perform SpMV with local subdomain and 2nd-level ghost
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Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 1st step of MPK,

» effects of interior precond propagates into 2nd-level underlap
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Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 2nd step of MPK,

(\}(d.fz)

6(11, 1)

o

» effects of interior precond pro pages into lst-level ghost
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Matrix Powers Kernel Performance on a node
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