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Outline

We consider solving the linear system of equations,

Ax = b,

where A is large and non-symmetric.

I Many applications: e.g., scientific/engineering applications when solving PDEs

I Communication-avoiding Krylov method:

- GMRES for solving large-scale problems

I Communication-Avoiding Preconditioners for CA methods

- A domain decomposition framework for CA preconditioning

I Hybrid CPU/GPU cluster implementation
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Communication-Avoiding Methods

I Communication:

- Moving data between levels of memory

- Moving data between processors in a network

I Communication-Avoiding: Reduce Communication (messages, volume)

- Not Communication hiding

I Improves Time to solution and
Reduces energy consumption

I More important in future
architectures

Communication costs a lot of energy!!!!

• Hypothesis: Reducing communication via
communication-avoiding (CA) algorithms can reduce
energy/task

Source: John Shalf, LBLAndrew Gearhart March 1, 2013 3

(Image Courtesy: John Shalf, LBL)
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Communication-Avoiding Iterative Methods

I Originally proposed 30 years ago for Conjugate Gradient (J. van Rosendale,
1983).

I Chronopoulos and Gear - “s-step iterative methods” (1989)

I R. Leland - The effectiveness of these methods (1989)

I Walker - Implementation of the GMRES method using Householder
transformations (1988)

I E. de Sturler and H. A. van der Vorst - GMRES and CG, basis vectors
(2005)

I M. Hoemmen (2010) - TSQR, “Communication-Avoiding” methods

I Two main problems:

- “Good” basis vectors (works for practical ‘s’)

- Lack of preconditioners (This talk)

Domain decomposition based CA preconditioner 4/37



Preconditioners for Communication-Avoiding Iterative
Methods

I Preconditioners that are like SpMV or that add no communication

- Polynomial preconditioning, Sparse approximate inverse

- CA-ILU(0) (L. Grigori and S. Moufawad, 2013)

- Deflation based preconditioning (E. Carson 2014)

I Preconditioners that use low-rank like structures

- Need changes to how the matrix is stored and no known evaluation with
s-step methods

I Other related methods

- s-step GMRES as bottom solver for multigrid (IPDPS 14)

- Communication hiding pipelined Krylov methods do not have the
preconditioning problem (P. Ghyssels et al., 2013)

- Heirarchical Krylov Methods [L. McInnes et al.]
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Restarted GMRES with GPUs

1 Generate Krylov Basis on GPUs: O(m · nnz(A) + m2n) flops

for j = 1, 2, . . . ,m do

Sparse Matrix-Vector Multiply (SpMV (+ Precond)):

qj+1 := Aqj

Orthonormalization (Orth):

qj+1 := qj+1 −Q1:jQ
T
1:jqj+1

end for

2 Solve Projected Subsystem on CPUs: O(m2) flops

small structured least-square problem

→ restart with “best” initial vector q1 in Q1:m A Q

I generating basis vectors dominates computational cost.
I distribute A and Q in a 1D block row among GPUs.
I redundantly solve least-squares by each process.

I both SpMV and Orth require “expensive” communication:
I point-to-point/neighborhood for SpMV (inter-GPU).
I global all-reduces in Orth (inter-GPU).

I data movements through local memory hierarchy (intra-GPU).
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Communication-Avoiding Implementation of s-step GMRES

1.Generate Krylov Basis:
for j = 1, 1 + s, . . . ,m do

Matrix Powers Kernel (MPK):
qk+1 := Aqk, for k = j, . . . , j + s− 1

Block Orthogonalization (BOrth):
orthogonalize Qj+1:j+s against Q1:j

Tall-skinny QR (TSQR):
orthogonalize Qj+1:j+s

compute Hj:j+s−1,j+1:j+s

end for
2.Solve Projected Subsystem on CPUs: ∼ O(m2) flops.

structured small least-square problem

→ restart with “best” initial vector q1 in Q1:m.

I replace SpMV and Ortho with MPK and BOrth+TSQR.

I reduce comm by generating s vectors “at once”
(e.g., replace BLAS-2 with BLAS-3).
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Matrix Powers Kernel for a tridiagonal matrix

For a given starting vector q, compute Aq, A2q, . . . , Asq (e.g., s = 4):

Aq

q

Aq

Aq

Aq

2

3

4

1. communicate required nonlocal elements for s-step between GPUs

2. apply s SpMVs with extra computation on shrinking ghost

- local submatrix is expanded with s-level ghost

→ reduce inter-GPU latency by s (with redundant computation).
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I to compute local elements of qs+1,

one SpMV requires local and nonlocal 1-level ghost elements
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I to compute local elements of qs+1,

two SpMVs require local and nonlocal 2-level ghost elements.
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of q1
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of of q1

→ compute local and 1-level ghost elements of q2
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements of q2
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Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements

→ compute local elements of q3
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Our Matrix Powers Kernel Implementation with multiple GPUs

Initialize MPK:
set up communication pattern.

expand local submatrix with ghost elements, etc.

CA-GMRES with GPUs.
1. Generate Krylov Basis:

for j = 1, 1 + s, . . . ,m do

MPK:
Inter-GPU Communication: each MPI process

1. CPU ← GPUs using CUDA

2. CPUs ←→ CPUs using MPI

3. CPU → GPUs using CUDA

GPU Kernel:
for k = 1, 2, . . . s do

SpMV with local and k-level ghost elements

end for

BOrth and TSQR.
end for

2. Solve projected system.

I currently optimized only for inter-GPU communication,
and not for intra-GPU communication
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Matrix Powers Kernel Performance on a node

Our MPK requires overheads, but reduces inter-GPU latency:

I additional memory to store “ghost” elements

I addition computation for SpMV with “ghost” elements

I potentially, increasing total inter-GPU communication volume.
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Integrating preconditioner into MPK

Apply Preco followed by SpMV at each step of MPK

for k = j, j + 1, . . . , j + s− 1 do

Preco: qk+1 := M−1qk

SpMV: qk+1 := Aqk+1

end for

I focus on right-preconditioning, generating κ(AM−1,q1)

- can be easily extended to left-preconditioning

I not increase inter-GPU comm from what is already needed by MPK
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Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication
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Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication
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Challenge: block Jacobi preconditioner increases communication

I Solution 1: consider 2× s levels of ghost (Preco then SpMV)

“global” preconditioner, potentially large overhead e.g., CA-ILU(0) [Grigori et.al’14]

I Solution 2: consider what we can do without additional comm
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Domain Decomposition Preconditioner for CA-Krylov

I for 1st SpMV, neighboring GPUs require elements on 1-level underlap

- local elements reachable from other subdomains by one edge
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Domain Decomposition Preconditioner for CA-Krylov

I for 2nd SpMV, neighboring GPUs require elements on 2-level underlap

- local elements reachable from other subdomains by two edges
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Domain Decomposition Preconditioner for CA-Krylov

Interior of 
subdomain 2

s level underlap, 
relative to 
subdomain 1

s level overlap, 
relative to 
subdomain 1

Interior of 
subdomain 1

In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”
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Domain Decomposition Preconditioner for CA-Krylov

Interior of 


Subdomain 1



Interior of 


Subdomain 2



In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”
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Domain Decomposition Preconditioner for CA-Krylov

For Precon at 1st step of MPK,

I local preconditioning on interior and 2-level underlap/ghost of q1

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 2-level ghost
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I SpMV with local subdomain and 2-level ghost of q1
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Domain Decomposition Preconditioner for CA-Krylov

For Precon at 2nd step of MPK,

I local preconditioning on interior and 1-level underlap/ghost of q2

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 1-level ghost

Domain decomposition based CA preconditioner 27/37



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I SpMV with local subdomain and 1-level ghost of q2
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I apply SpMV with local subdomain and 1-level ghost

→ compute local elements of q3
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Domain Decomposition Preconditioner for CA-Krylov

Summary: at jth step of MPK,

I effects of interior precond grows (i.e., sth to (s− j + 2)th levels of underlap)

I underlap required by neighbors shrinks (i.e., (s− j + 1)th to 1st levels)

I no increase in inter-GPU communication

I any local preconditioner/solver on interior
- ILU(k or τ), SAI(k), Jacobi, Gauss-Seidel, etc.

I preconditioner on underlap/ghost
- diagonal Jacobi: interior precond propagates only within subdomain

- extension in current work
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Experimental Setup

I graph partitioning (e.g., METIS) for load balance and small communication

I local matrix reordering (e.g., METIS, RCM) for performance
(e.g., nested dissection for triangular solves on GPU)

I matrix equilibration for numerical stability

I Newton basis to enhance MPK stability, vk+1 = Πk
i=1(A− θi)q1.

shifts θi are Ritz values from first restart loop (GMRES)

I Precon computed on CPU (e.g., ITSOL, ParaSail), and copied and
apply it on GPU (e.g., trsv/spmv of CuSPARSE)

I Keeneland at Georgia Tech
each node has 2× 6 Intel Xeon + 3 NDIVIA M2090.

I Test matrix: PDE(α): n ≈ 106, symmetric but can be indefinite
- larger α makes it more ill-conditioned

- α > 1 makes it indefinite
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CA-GMRES Performance (speedups vs. GMRES on one GPU)
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I obtained speedups of up to 2.5

- more details in our IPDPS/SC’14 papers.
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Convergence Results
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I DD preconditioner improves the convergence

- faster convergence with a larger overlap

- slower convergence with a larger underlap
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Restart Cycle Time Breakdown
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I SAI(0) is used for PDE(1.0275)

I ILU(0) is required for Circuit G3
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Time to Solution Speedups vs. CA-GMRES
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I speedups of up to 7.5× over CA-GMRES without preconditioner

I speedups of up to 1.7× over GMRES with preconditioner

I Our MPK is not optimized on a GPU
I On GPUs, Ortho performs great, and SpMV/Preco can dominate

easily.
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Summary

I proposed domain decomposition preconditioners for CA-Krylov

I do not increase inter-process communication
I can use any solver on interior problem

I presented results of a block Jacobi like implementation

I diagonal Jacobi on underlap/ghost
I potential to improve convergence/performance

- over precond GMRES or standard CA-GMRES

Future work

I improving performance

I utilizing CPU, partitioning, etc.

I underlap/ghost preconditioning

I more extensions (e.g., “flexible” preconditioner)
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Thank you!!
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Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I perform SpMV with local subdomain and 2nd-level ghost
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Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 1st step of MPK,

I effects of interior precond propagates into 2nd-level underlap
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Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 2nd step of MPK,

I effects of interior precond pro pages into 1st-level ghost
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Matrix Powers Kernel Performance on a node
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