
Preconditioning Communication-Avoiding Krylov Methods

Sivasankaran Rajamanickam†, Ichitaro Yamazaki∗, Erik G. Boman†,
Mark Hoemmen†, Michael A. Heroux†, Stanimire Tomov∗,

Jack Dongarra∗

†Sandia National Laboratories, Albuquerque, New Mexico, USA
∗University of Tennessee, Knoxville, USA

SIAM Computational Science and Engineering
March 2015

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

Domain decomposition based CA preconditioner 1/37

SAND2015-1886CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Outline

We consider solving the linear system of equations,

Ax = b,

where A is large and non-symmetric.

I Many applications: e.g., scientific/engineering applications when solving PDEs

I Communication-avoiding Krylov method:

- GMRES for solving large-scale problems

I Communication-Avoiding Preconditioners for CA methods

- A domain decomposition framework for CA preconditioning

I Hybrid CPU/GPU cluster implementation

Domain decomposition based CA preconditioner 2/37



Communication-Avoiding Methods

I Communication:

- Moving data between levels of memory

- Moving data between processors in a network

I Communication-Avoiding: Reduce Communication (messages, volume)

- Not Communication hiding

I Improves Time to solution and
Reduces energy consumption

I More important in future
architectures

Communication costs a lot of energy!!!!

• Hypothesis: Reducing communication via
communication-avoiding (CA) algorithms can reduce
energy/task

Source: John Shalf, LBLAndrew Gearhart March 1, 2013 3

(Image Courtesy: John Shalf, LBL)

Domain decomposition based CA preconditioner 3/37



Communication-Avoiding Iterative Methods

I Originally proposed 30 years ago for Conjugate Gradient (J. van Rosendale,
1983).

I Chronopoulos and Gear - “s-step iterative methods” (1989)

I R. Leland - The effectiveness of these methods (1989)

I Walker - Implementation of the GMRES method using Householder
transformations (1988)

I E. de Sturler and H. A. van der Vorst - GMRES and CG, basis vectors
(2005)

I M. Hoemmen (2010) - TSQR, “Communication-Avoiding” methods

I Two main problems:

- “Good” basis vectors (works for practical ‘s’)

- Lack of preconditioners (This talk)

Domain decomposition based CA preconditioner 4/37



Preconditioners for Communication-Avoiding Iterative
Methods

I Preconditioners that are like SpMV or that add no communication

- Polynomial preconditioning, Sparse approximate inverse

- CA-ILU(0) (L. Grigori and S. Moufawad, 2013)

- Deflation based preconditioning (E. Carson 2014)

I Preconditioners that use low-rank like structures

- Need changes to how the matrix is stored and no known evaluation with
s-step methods

I Other related methods

- s-step GMRES as bottom solver for multigrid (IPDPS 14)

- Communication hiding pipelined Krylov methods do not have the
preconditioning problem (P. Ghyssels et al., 2013)

- Heirarchical Krylov Methods [L. McInnes et al.]

Domain decomposition based CA preconditioner 5/37



Restarted GMRES with GPUs

1 Generate Krylov Basis on GPUs: O(m · nnz(A) + m2n) flops

for j = 1, 2, . . . ,m do

Sparse Matrix-Vector Multiply (SpMV (+ Precond)):

qj+1 := Aqj

Orthonormalization (Orth):

qj+1 := qj+1 −Q1:jQ
T
1:jqj+1

end for

2 Solve Projected Subsystem on CPUs: O(m2) flops

small structured least-square problem

→ restart with “best” initial vector q1 in Q1:m A Q

I generating basis vectors dominates computational cost.
I distribute A and Q in a 1D block row among GPUs.
I redundantly solve least-squares by each process.

I both SpMV and Orth require “expensive” communication:
I point-to-point/neighborhood for SpMV (inter-GPU).
I global all-reduces in Orth (inter-GPU).

I data movements through local memory hierarchy (intra-GPU).

Domain decomposition based CA preconditioner 6/37



Communication-Avoiding Implementation of s-step GMRES

1.Generate Krylov Basis:
for j = 1, 1 + s, . . . ,m do

Matrix Powers Kernel (MPK):
qk+1 := Aqk, for k = j, . . . , j + s− 1

Block Orthogonalization (BOrth):
orthogonalize Qj+1:j+s against Q1:j

Tall-skinny QR (TSQR):
orthogonalize Qj+1:j+s

compute Hj:j+s−1,j+1:j+s

end for
2.Solve Projected Subsystem on CPUs: ∼ O(m2) flops.

structured small least-square problem

→ restart with “best” initial vector q1 in Q1:m.

I replace SpMV and Ortho with MPK and BOrth+TSQR.

I reduce comm by generating s vectors “at once”
(e.g., replace BLAS-2 with BLAS-3).

Domain decomposition based CA preconditioner 7/37



Matrix Powers Kernel for a tridiagonal matrix

For a given starting vector q, compute Aq, A2q, . . . , Asq (e.g., s = 4):

Aq

q

Aq

Aq

Aq

2

3

4

1. communicate required nonlocal elements for s-step between GPUs

2. apply s SpMVs with extra computation on shrinking ghost

- local submatrix is expanded with s-level ghost

→ reduce inter-GPU latency by s (with redundant computation).

Domain decomposition based CA preconditioner 8/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I to compute local elements of qs+1,

one SpMV requires local and nonlocal 1-level ghost elements

Domain decomposition based CA preconditioner 9/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I to compute local elements of qs+1,

two SpMVs require local and nonlocal 2-level ghost elements.

Domain decomposition based CA preconditioner 10/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of q1

Domain decomposition based CA preconditioner 11/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of of q1

→ compute local and 1-level ghost elements of q2

Domain decomposition based CA preconditioner 12/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements of q2

Domain decomposition based CA preconditioner 13/37



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements

→ compute local elements of q3

Domain decomposition based CA preconditioner 14/37



Our Matrix Powers Kernel Implementation with multiple GPUs

Initialize MPK:
set up communication pattern.

expand local submatrix with ghost elements, etc.

CA-GMRES with GPUs.
1. Generate Krylov Basis:

for j = 1, 1 + s, . . . ,m do

MPK:
Inter-GPU Communication: each MPI process

1. CPU ← GPUs using CUDA

2. CPUs ←→ CPUs using MPI

3. CPU → GPUs using CUDA

GPU Kernel:
for k = 1, 2, . . . s do

SpMV with local and k-level ghost elements

end for

BOrth and TSQR.
end for

2. Solve projected system.

I currently optimized only for inter-GPU communication,
and not for intra-GPU communication

Domain decomposition based CA preconditioner 15/37



Matrix Powers Kernel Performance on a node

Our MPK requires overheads, but reduces inter-GPU latency:

I additional memory to store “ghost” elements

I addition computation for SpMV with “ghost” elements

I potentially, increasing total inter-GPU communication volume.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

s

T
im

e
 (

s
)

G3_Circuit

 

 

2 GPUs

3 GPUs

Domain decomposition based CA preconditioner 16/37



Integrating preconditioner into MPK

Apply Preco followed by SpMV at each step of MPK

for k = j, j + 1, . . . , j + s− 1 do

Preco: qk+1 := M−1qk

SpMV: qk+1 := Aqk+1

end for

I focus on right-preconditioning, generating κ(AM−1,q1)

- can be easily extended to left-preconditioning

I not increase inter-GPU comm from what is already needed by MPK

Domain decomposition based CA preconditioner 17/37



Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication

Domain decomposition based CA preconditioner 18/37



Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication

Domain decomposition based CA preconditioner 19/37



Challenge: block Jacobi preconditioner increases communication

I Solution 1: consider 2× s levels of ghost (Preco then SpMV)

“global” preconditioner, potentially large overhead e.g., CA-ILU(0) [Grigori et.al’14]

I Solution 2: consider what we can do without additional comm

Domain decomposition based CA preconditioner 20/37



Domain Decomposition Preconditioner for CA-Krylov

I for 1st SpMV, neighboring GPUs require elements on 1-level underlap

- local elements reachable from other subdomains by one edge

Domain decomposition based CA preconditioner 21/37



Domain Decomposition Preconditioner for CA-Krylov

I for 2nd SpMV, neighboring GPUs require elements on 2-level underlap

- local elements reachable from other subdomains by two edges

Domain decomposition based CA preconditioner 22/37



Domain Decomposition Preconditioner for CA-Krylov

Interior of 
subdomain 2

s level underlap, 
relative to 
subdomain 1

s level overlap, 
relative to 
subdomain 1

Interior of 
subdomain 1

In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”

Domain decomposition based CA preconditioner 23/37



Domain Decomposition Preconditioner for CA-Krylov

Interior of 


Subdomain 1



Interior of 


Subdomain 2



In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”

Domain decomposition based CA preconditioner 24/37



Domain Decomposition Preconditioner for CA-Krylov

For Precon at 1st step of MPK,

I local preconditioning on interior and 2-level underlap/ghost of q1

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 2-level ghost

Domain decomposition based CA preconditioner 25/37



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I SpMV with local subdomain and 2-level ghost of q1

Domain decomposition based CA preconditioner 26/37



Domain Decomposition Preconditioner for CA-Krylov

For Precon at 2nd step of MPK,

I local preconditioning on interior and 1-level underlap/ghost of q2

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 1-level ghost

Domain decomposition based CA preconditioner 27/37



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I SpMV with local subdomain and 1-level ghost of q2

Domain decomposition based CA preconditioner 28/37



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I apply SpMV with local subdomain and 1-level ghost

→ compute local elements of q3

Domain decomposition based CA preconditioner 29/37



Domain Decomposition Preconditioner for CA-Krylov

Summary: at jth step of MPK,

I effects of interior precond grows (i.e., sth to (s− j + 2)th levels of underlap)

I underlap required by neighbors shrinks (i.e., (s− j + 1)th to 1st levels)

I no increase in inter-GPU communication

I any local preconditioner/solver on interior
- ILU(k or τ), SAI(k), Jacobi, Gauss-Seidel, etc.

I preconditioner on underlap/ghost
- diagonal Jacobi: interior precond propagates only within subdomain

- extension in current work

Domain decomposition based CA preconditioner 30/37



Experimental Setup

I graph partitioning (e.g., METIS) for load balance and small communication

I local matrix reordering (e.g., METIS, RCM) for performance
(e.g., nested dissection for triangular solves on GPU)

I matrix equilibration for numerical stability

I Newton basis to enhance MPK stability, vk+1 = Πk
i=1(A− θi)q1.

shifts θi are Ritz values from first restart loop (GMRES)

I Precon computed on CPU (e.g., ITSOL, ParaSail), and copied and
apply it on GPU (e.g., trsv/spmv of CuSPARSE)

I Keeneland at Georgia Tech
each node has 2× 6 Intel Xeon + 3 NDIVIA M2090.

I Test matrix: PDE(α): n ≈ 106, symmetric but can be indefinite
- larger α makes it more ill-conditioned

- α > 1 makes it indefinite

Domain decomposition based CA preconditioner 31/37



CA-GMRES Performance (speedups vs. GMRES on one GPU)

1 12 24 36 48 60 72 84 96 108 120
0

4

8

12

16

20

24

28

32

36

40

44

48

52

Number of GPUs

S
p

e
e

d
u

p

 

 

CA−GMRES(5,15,30)

GMRES(30)

I obtained speedups of up to 2.5

- more details in our IPDPS/SC’14 papers.

Domain decomposition based CA preconditioner 32/37



Convergence Results

5 10 15 20 25 30 35 40 45
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e
la

ti
v
e
 R

e
s
id

u
a
l 
N

o
rm

PDE(0.0) on 6 GPUs, m=20, SAI(0)

 

 

GMRES
GMRES+block Jacobi
GMRES+overlap (s=1)
GMRES+overlap (s=2)
GMERS+underlap (s=1)
GMRES+underlap (s=2)
CA−GMRES+underlap (s=1)
CA−GMRES+underlap (s=2)

100 200 300 400 500 600 700 800 900 1000
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e
la

ti
v
e
 R

e
s
id

u
a
l 
N

o
rm

PDE(1.0275) on 6 GPUs, m=60, SAI(0)

 

 

GMRES
GMRES+overlap (s=1)
GMRES+overlap (s=2)
CA−GMRES+underlap (s=1)
CA−GMRES+underlap (s=2)

I DD preconditioner improves the convergence

- faster convergence with a larger overlap

- slower convergence with a larger underlap

Domain decomposition based CA preconditioner 33/37



Restart Cycle Time Breakdown

1 3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of GPUs

T
im

e
 (

s
)

CA−GMRES(1,10,60), PDE(1.0275)

 

 

Others

Ortho

Preco, SAI(0)

MPK(+Comm.)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of GPUs

T
im

e
 (

s
)

CA−GMRES(1,8,30), Circuit_G3

 

 

Others

BOrth+TSQR

Preco, ILU(0)

MPK(+Comm)

I SAI(0) is used for PDE(1.0275)

I ILU(0) is required for Circuit G3

Domain decomposition based CA preconditioner 34/37



Time to Solution Speedups vs. CA-GMRES

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
PDE(1.0275)

Number of GPUs

S
p
e
e
d
u
p
s

 

 

CA−GMRES(1,10,60), precond

GMRES(60), precond

CA−GMRES(2,10,60)

GMRES(60)

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

3.5

Number of GPUs

S
p
e
e
d
u
p
s

G3_Circuit

 

 

CA−GMRES(1,8,30), precond

GMRES(30), precond

CA−GMRES(4,8,30)

GMRES(30)

I speedups of up to 7.5× over CA-GMRES without preconditioner

I speedups of up to 1.7× over GMRES with preconditioner

I Our MPK is not optimized on a GPU
I On GPUs, Ortho performs great, and SpMV/Preco can dominate

easily.

Domain decomposition based CA preconditioner 35/37



Summary

I proposed domain decomposition preconditioners for CA-Krylov

I do not increase inter-process communication
I can use any solver on interior problem

I presented results of a block Jacobi like implementation

I diagonal Jacobi on underlap/ghost
I potential to improve convergence/performance

- over precond GMRES or standard CA-GMRES

Future work

I improving performance

I utilizing CPU, partitioning, etc.

I underlap/ghost preconditioning

I more extensions (e.g., “flexible” preconditioner)

Domain decomposition based CA preconditioner 36/37



Thank you!!

Domain decomposition based CA preconditioner 37/37



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I perform SpMV with local subdomain and 2nd-level ghost

Domain decomposition based CA preconditioner 38/37



Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 1st step of MPK,

I effects of interior precond propagates into 2nd-level underlap

Domain decomposition based CA preconditioner 39/37



Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 2nd step of MPK,

I effects of interior precond pro pages into 1st-level ghost

Domain decomposition based CA preconditioner 40/37



Matrix Powers Kernel Performance on a node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

S
u

rf
a

c
e

/V
o

lu
m

e
 R

a
ti
o

 

 

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUs (KWY)

Domain decomposition based CA preconditioner 41/37


	Appendix

