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Overview
Goal: efficient accurate surrogates of material processes

Everyone is doing machine
learning, it is easy and

sometimes useful.

Anonymous - a paraphrase of

George Box

Outline

Problems of interest
Neural networks

A hybrid RNN-CNN
Tensor basis NN
Graph CNN
ConvLSTM

Conclusion
References

Please ask questions

Which one is the ML
prediction?

one is a “deep fake”
2 / 24



Microstructural problems of interest
Premise: the state of each of these systems/processes can be
encoded as an image/field with multiple channels φ(X).

bubbles multi-phase polycrystal pores/inclusions
Classes of problems:
I property estimation: map initial image φ(X) to a static

quantity ε, e.g. diffusivity
I homogenization: map initial image φ(X) and forcing ε(t) to

evolving scalar quantity Ψ(t), e.g. energy
I field prediction: map initial image φ(X) and forcing f(t) to

an evolving field σ(X, t), e.g. stress field

Applications: subgrid models, structure-property
exploration/optimization, & material uncertainty quantification
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Microstructural problems of interest: challenges
data representation: point clouds,
graphs, grids, meshes

slight compactions of the systems with density increases of
no more than 0.1 g/cc for porous silica systems with densities
between 0.1 and 2.1 g/cc.55 In contrast, our simulations expe-
rienced significant contraction with the 30.6% porosity VS
simulation (Table I, VS simulation 1) reaching a porosity of
2.4% at the conclusion of the relaxation run and essentially
creating dense silica, although this effect decreases with
increasing porosity. This indicates that prior to the extra
relaxation step the VS method generates highly nonequilibri-
um structures. Conversely, no CS simulation lost more than
2% of its porosity during the additional relaxation step
(Table I, CS simulations 1–7). As the CS simulation method
already includes a volume relaxation step to balance out the
original low-density structure, we believe that the CS struc-
tures have already reached equilibrium and the final relaxa-
tion step is not critical. In addition, it is the extra density
relaxations step which accounts for the variability in the
porosity of the systems.

Notwithstanding the additional relaxation, the VS simula-
tion method still has a higher S/V ratio than the charge-scal-
ing simulation until 60% porosity. Qualitative analysis of the
systems shows microstructures comparable to their pre relax-
ation counterparts suggesting that the relaxation does not
impart significant changes to the pore morphology.

(2) Atomic Structure Analyses
Bond angle and pair distribution can effectively probe the
short- to medium-range structure changes in simulated nano-
porous silica structures. O–Si–O BAD are used to represent
the regularity of the silicon oxygen tetrahedrons, whereas the
Si–O–Si BAD describes tetrahedron connectivity. BAD were
calculated for nanoporous silica systems with ~30% postre-
laxation porosity created using the two methods described
above.

The VS Si–O–Si BAD [Fig. 3(a)] experienced a shift
toward lower bond angles after relaxation resulting in a max-
imum Si–O–Si BAD value of 149° pre relaxation and 140°
post relaxation. This suggests a trend toward experimental
Si–O–Si BAD values reported between 142° and 144° by
X-ray diffraction, high-energy X-ray, and nuclear magnetic
resonance.54,63,64 The shift in the Si–O–Si BAD is not dem-
onstrated in CS simulations with a maximum Si–O–Si BAD
value occurring at 138° for both pre and postrelaxation simu-
lations [Fig. 3(b)]. We believe that the shift in the VS Si–O–
Si BAD is a consequence of the density relaxation during
which the silica tetrahedron become tightly packed. Rari-
vomanantsoa et al. observed a similar shift associated with
density relaxation in their MD studies of amorphous silica
surfaces.65 This is in contrast to suggestion by Becker and
De Leeuw that the shift is a result of the lower Si–O–Si
angles due to surface defects.53 The small peak located at 98°
in the Si–O–Si BAD for both simulation methods is consis-
tent with the development of high-energy two- and three-
membered rings at the internal surfaces. This Si–O–Si peak is
noted to occur at 95°–98° by Du and Cormack.59

The O–Si–O BAD peak for both simulation methods are
109° (Fig. 4), consistent with the tetrahedral angle of 109.5°
and confirming the tetrahedron geometry of SiO4 polyhe-
dron. This is consistent with maximum O–Si–O BAD angles
between 109.3° and 109.7° derived from bond length distribu-
tions based on neutron and high-energy X-ray diffraction
data.66 The small peak in the O–Si–O BAD at 80° is the
result of two- and three-membered rings at the surface by
Rarivomanantsoa et al. and Du and Cormack.59,65 There is a
sharpening of the O–Si–O BAD peak for the VS simulations
with full width half maximum of 22° and 13° for pre and
post relaxation, respectively as a result of the continued
relaxation of the structure decreasing the variability in the
O–Si–O bond angle. The FWHM value is consistent with the
same measurement reported for vitreous silica MD simula-
tions with the BKS (potential developed by van Beest,

Kramer and van Santen) and Vessel potentials (15.1° and
12.2°, respectively).64,66 This change is not documented in
the CS simulation method which exhibits an almost identical
O–Si–O BAD pre and post relaxation. This confirms our
assumption that structures generated from CS simulations
are sufficiently relaxed in the Beckers and De Leeuw protocol
that additional relaxation steps generate few changes. Struc-
tures generated from both methods exhibited little change in
either BAD value with increasing porosity indicating that the
connectivity of the silica backbone is being maintained with
wide range of porosities. The exception to this would be a
small increase in the size of the prepeak (Fig. 3) which is
caused by an increase in two-membered ring concentration
due to the additional internal surface area associated with
more porous systems.

(a)

(b)

Fig. 2. Snapshot of the cross-section views of porous silica structures
developed with the (a) volume scaling and (b) charge scaling simulation
methods with around 42% porosity. Yellow atoms are silicon, red
atoms are oxygen, and the Connolly surface (as described in section II)
is outlined in blue (internal surface) and gray (external surface). The
simulation cell size of (a) is 42.79 �A 9 42.79 �A 9 42.79 �A and that for
(b) is 42.88 �A 9 42.88 �A 9 42.88 �A.

March 2014 Structural and Mechanical Properties of Nanoporous Silica 775

2 N.N. Vlassis, R. Ma and W. Sun / Computer Methods in Applied Mechanics and Engineering 371 (2020) 113299

Fig. 1. Polycrystal interpreted as a weighted connectivity graph. The graph is undirected and weighted at the nodes.

of voids is related to ductile fracture [1–6], critical state plasticity in which porosity and over-consolidation ratio
dictates the plastic dilatancy and hardening law [7–12] and crystal plasticity where the activation of slip systems
leads to plastic deformation [13–15]. In these cases, a specific subset of descriptors is often incorporated manually
such that the most crucial deformation mechanisms for the stress–strain relationships are described mathematically.

While this approach has achieved a level of success, especially for isotropic materials, materials of complex
microstructures often require more complex geometric and topological descriptors to sufficiently describe the
geometrical features [16–19]. The human interpretation limits the complexity of the state variables and may lead
to lost opportunity of utilizing all the available information for the microstructure, which could in turn reduce the
prediction quality. A data-driven approach should be considered to discover constitutive law mechanisms when
human interpretation capabilities become restrictive [20–25]. In this work, we consider the general form of a strain
energy functional that reads,

 =  (F, G) , P =
@ 

@ F
, (1)

where G is a graph that stores the non-Euclidean data of the microstructures (e.g. crystal connectivity, grain
connectivity). Specifically, we attempt to train a neural network approximator of the anisotropic stored elastic energy
functional across different polycrystals with the sole extra input to describe the anisotropy being the weighted crystal
connectivity graph (see Fig. 1).

It can be difficult to directly incorporate either Euclidean or non-Euclidean data to a hand-crafted constitutive
model. There have been attempts to infer information directly from scanned microstructural images using neural
networks that utilize a convolutional layer architecture (CNN) [26]. The endeavor to distill physically meaningful
and interpretable features from scanned microstructural images stored in a Euclidean grid can be a complex and
sometimes futile process. While recent advancements in convolutional neural networks have provided an effective
means to extract features that lead to extraordinary superhuman performance for image classification tasks [27],
similar success has not been recorded for mechanics predictions. Image-related problems, such as camera noise,
saturation, image compression as well as ring artifacts, which often occur in micro-CT images, may lead to issues
in the deconvolution operators and, in some cases, may constitute an obstacle in acquiring useful and interpretable
features from the image dataset [28]. In some cases, over-fitting and under-fitting can both render the trained CNN
extremely vulnerable to adversarial attacks and hence not suitable for high-risk, high-regret applications.

As demonstrated in previous works [29,30], using images directly as an additional input to the polycrystal energy
functional approximator may be contingent to the quality and size of the training pool. A large number of images,
possibly in three dimensions, and in high enough resolution would be necessary to represent the latent features
that will aid the approximator to distinguish successfully between different polycrystals. Using data in a Euclidean
grid is an esoteric process that is dependent on empirical evidence that the current training sample holds adequate
information to infer features useful in formulating a constitutive law. However, gathering that evidence can be a
laborious process as it requires numerous trial and error runs and is weighed down by the heavy computational
costs of performing filtering on Euclidean data (e.g. on high resolution 3D image voxels).

noise: real vs simulated

evolution: causal changes with time

... values and topology

regularity: sensitivity

failure
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Neural networks - basics

The simplest neural network (NN) is a multilayer perceptron
(MLP), a directed graph of densely connected nodes organised in
layers. Inputs are weighted, summed and transformed to outputs
by non-linear ramp/switch-like activation functions.

y j = f

(∑
i

wijx i + bj

)
︸ ︷︷ ︸

affine/linear

The parameters w , b are trained
via backpropagation and stochas-
tic descent i.e. regression.

input

output

layer

layer

layer

• node

A NN is basically a functional form to be fit. Like box of
LEGOSTM, layers with particular characteristics can be linked
together to create a model.
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Deep learning: convolutional neural networks

All informative features may not be apparent. Given a microstructural
image φ(X) is hard to see what determines the response Ψ(t).

Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.

For example, filters can:

I Smooth/filter noise: convolving an
image with a Gaussian kernel.

I Average/coarsen: multiplying with
constant moving patch

I Gradients and higher derivatives: filter
corresponding a finite difference stencil.

I Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights wij and bias b for a kernel (smaller
than image MLP) and multiple filters can detect multiple hidden features.
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Exemplar microstructure problems

(A) polycrystal (B) porosity
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Crystal plasticity

Predicting metal plasticity is still a hard problem. Polycrystalline
plasticity is a good exemplar for other microstructural problems.

If we observe initial microstructures and mechanical tests:

can we predict particular: (a) stress-strain averages or, (b) full
field evolution of a polycrystalline material or a material with
microstructure in general?
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Training data

Even with high-throughput tests we cannot current generate more
than ≈ 102 tests, we need a dataset with ≈ 104 samples for a NN.

So, we resort to high-fidelity simulation data /
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Training data

Sampling loading modes, microstructures, etc to obtain sufficient
data is expensive
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A hybrid RNN-CNN network for time evolution
To predict the evolution of the average stress we augment the
output of a CNN that processes the initial microstructure with the
loading/time dependence. The CNN output is only correlated with
the observable through a RNN.

A recurrent NN (RNN) uses
a causal time filter to process
history information. An RNN
for time is an analog to the
CNN for spatial data.

How much to reduce the
image to nfeatures?

We are also exploring alterna-
tives to RNN such as more tra-
ditional time integrators.

CNN

encoder

RNN

history ε(ti) image þ(xI)

convolution

convolution

pooling

convolution

convolution

pooling

flatten

dense

dense

dense

recursive

recursive

...

recursive

mixing

stress σ(ti)
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know

what “hidden” microstructural fea-

tures the observable stress depends

on, e.g. average misorientation
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Predicting the particular response to microstructure
Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.

Correlation of elastic response
(NN, Voigt and Reuss predic-
tions), NN on par with Hill av-
erage.
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Physical symmetries

Satisfaction of physical constraints and symmetries is expected in
physical models and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

I Augment the dataset with many
examples of what should happen,
e.g. rotate the inputs and outputs
(soft and inefficient)

I Penalize loss / training objective
function (introduces a meta
parameter and can be hard to
formulate)

I Embed the symmetry in the NN
architecture so that the response
exactly preserves the symmetry
(can be hard to formulate)

→
y y

→
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Objectivity and representation theory
We want to embed symmetries in the NN structure – so that
they are exact/not learned. Let’s go back to classical theory...

Material frame indifference for constitutive function M(A)

GM(A)GT = M(GAGT ) ,

for every member G of the orthogonal group.
Based on the spectral A =

∑3
i=1 λiai ⊗ ai , and Cayley-Hamilton

theorems

A3 − tr(A)A2 +
1

2

(
tr2 A− tr A2

)
A− det(A)I = 0

one can obtain a compact general representation/model form:

M(A) = c0(I)I + c1(I)A + c2(I)A2 =
∑
i

ci (I)Ai

in form of unknown coefficient functions of invariants and a
known tensor basis. Inputs: scalar invariants I & tensor basis B.
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A tensor basis neural network

A tensor basis neural network is an NN implementation of this
representation [Ling JCP 2016],

where the coefficients are un-
known scalar functions of the
invariants I = {I0, I1, . . .}

M =
∑
i

ci (I)Bi

and a final merge/sum layer
associates ci with the tensor
basis B = {A0,A1, . . .}.

It is adept at representing the
response with exact invari-
ance / avoiding the need for
data augmentation for sym-
metry.

Basis:

Inputs:

Outputs:

Merge:

A

I B = {B0, B1}

I0 I1 I2

a(y00) a(y01) a(y02) a(y03)

a(y10) a(y11) a(y12) a(y13)

a(y20) a(y21) a(y22) a(y23)

c0 c1

M =
∑

i ciBi
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Graph-based convolutional neural networks
CNNs work great for structured grid/rastered image but the need
interpolation for mesh-based fields and do not inherently satisfy
invariance Gσ(ε,φ)GT = σ(GεGT ,GφGT ) where φ is the initial
microstructure. E.g. a polycrystal has obvious segmentation that
leads directly to graph.

0.00 π

0.25 π

0.50 πReducing the grains to nodes and
shared interfaces to edges has been
shown effective [Vlassis CMAME
2020]
However this approach loses infor-
mation (eg the details of the grain
and interface geometry) and hence
requires featurization.

We propose applying the graph convolutions directly the mesh
topology. This approach does not require featurization but can
benefit from it. It does not increase the number of parameters
since the same kernels are being employed.
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Graph-based convolutional neural networks

Graph based convolution layers/filters [Kipf & Welling 2016]
can be applied directly to the graph based on the mesh topology :
elements are graph nodes and shared faces are graph edges.

w7 w8 w9

w4 w5 w6

w1 w2 w3

CNN filter

w1

w1 w2 w1

w1

GCNN filter

The GCNN filter uses the same weights for all the neighbors, hence
it produces the same output when the image is rotated.
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Graph-based convolutional neural networks

GCNNs have similar performance to CNN with fewer parameters
and inherent invariance.
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Graph-based convolutional neural networks

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the RNN-CNN pipeline)
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Full field predictions
An architecture similar to the one we used to predict system-level
evolution can be used to predict full-field (element/pixel level) evolution.
Inputs: pairs of

I image of initial microstructure

I system level strain history

The image is fed to a convolutional neu-
ral network to process its latent features
but not reduce them to a list of scalars.
Perhaps the optimal number of filters is
related to the dimensionality of the la-
tent space of the microstructure in this
context.

This is combined with the strain history
in a recurrent neural network, specifi-
cally a convLSTM, to produce the out-
put.

Output: full field stress evolution

ConvLSTM

history ‘(ti) image „(xI)

convolution

convolution

convolution

convolution

convolution

...

convolution

convolution

output ‡(xI , ti)
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Full field predictions

A convLSTM combines the RNN (time) and CNN (space) into
PDE-like model
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Conclusion
Applications:

I subgrid / multiscale surrogate
models

I structure-property exploration /
material optimization

I material uncertainty
quantification

Open/current issues:

I meta parameter / architecture
optimization

I interpretability ( latent space /
low dimensional manifold)

I training burden / multifidelity
(experimental+simulation) data

rjones@sandia.gov
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