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Overview

Goal: efficient accurate surrogates of material processes
Everyone is doing machine
learning, it is easy and

sometimes useful.

Anonymous - a paraphrase of

Which one is the ML
George Box

prediction?
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one is'a “deep fake”
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Microstructural problems of interest

Premise: the state of each of these systems/processes can be
encoded as an image/field with multiple channels ¢(X).

bubbles multi-phase polycrystal  pores/inclusions
Classes of problems:

> property estimation: map initial image ¢(X) to a static
quantity ¢, e.g. diffusivity
» homogenization: map initial image ¢(X) and forcing €(t) to
evolving scalar quantity W(t), e.g. energy
> field prediction: map initial image ¢(X) and forcing f(t) to
an evolving field o (X, t), e.g. stress field
Applications: subgrid models, structure-property
exploration /optimization, & material uncertainty quantification
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Microstructural problems of interest: challenges

data representation: point clouds,
graphs, grids, meshes

regularity: sensitivity

failure

. values and topology
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Neural networks - basics

The simplest neural network (NN) is a multilayer perceptron
(MLP), a directed graph of densely connected nodes organised in
layers. Inputs are weighted, summed and transformed to

by non-linear ramp/switch-like activation functions.

j=1 (Z wiix; + bj) @ /@ layer

\\\ input

. . layer
affine/linear Q @ Y
* node

The parameters w, b are trained / S output
via backpropagation and stochas- (j b
tic descent i.e. regression.

A NN is basically a functional form to be fit. Like box of
LEGOS™  layers with particular characteristics can be linked
together to create a model.

I
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Deep learning: convolutional neural networks

All informative features may not be apparent. Given a microstructural
image ¢(X) is hard to see what determines the response W(t).
Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.

For example, filters can:

» Smooth/filter noise: convolving an
image with a Gaussian kernel.

[
» Average/coarsen: multiplying with "
constant moving patch

» Gradients and higher derivatives: filter
corresponding a finite difference stencil.

» Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights w;; and bias b for a kernel (smaller
than image MLP) and multiple filters can detect multiple hidden features.
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(A)

Exemplar microstructure problems

(B) porosity
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Crystal plasticity

Predicting metal plasticity is still a hard problem. Polycrystalline

plasticity is a good exemplar for other microstructural problems.

If we observe initial microstructures and mechanical tests:

s Bui Build 8
Bulds  Buld4 Build 3

Build 10

can we predict particular: (a) stress-strain averages or, (b) full
field evolution of a polycrystalline material or a material with
microstructure in general?
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Training data

Even with high-throughput tests we cannot current generate more
than ~ 102 tests, we need a dataset with ~ 10* samples for a NN.

So, we resort to high-fidelity simulation data ®
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We generated realizations of oligocrystals with different textures
(crystal orientations) and run crystal plasticity simulations with a
variety of loadings.
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Training data

Sampling loading modes, microstructures, etc to obtain sufficient
data is expensive
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Error vs (microstructure)
sample size for a fixed size
test set

Error vs random sampling of
modes for homogeneous
material
Steep descrease until number of samples &= number of parameters,

then slow improvement
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A hybrid RNN-CNN network for time evolution

To predict the evolution of the average stress we augment the

output of a CNN that processes the initial microstructure with the
loading/time dependence. The CNN output is only correlated with
the observable through a RNN.

[lmtury e(t: )] ‘ image b(x;) ‘

T
convolution
convolution

A recurrent NN (RNN) uses
a causal time filter to process
history information. An RNN o
for time is an analog to the
CNN for spatial data.

How much to reduce the
image to Nfeatures? cneores

We are also exploring alterna- T T
tives to RNN such as more tra- 1
ditional time integrators. =
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know
what “hidden” microstructural fea-
tures the observable stress depends

on, e.g. average misorientation

& E ] q
E 0.01 4 °
0

o g d

0.001 E
o

0.0001
100 1000 10000 100000

DATASET SIZE
Training NN on stress-strain alone

stalls, but given initial microstruc-

tures continues to learn

5

4.5

4

PREDICTED HIDDEN
w

0 01 02 03 04 05 06 07
TRUE HIDDEN

True and learned hidden feature are

highly correlated - but not identical

o predicted DNN 5

0.7

©
0.6
0 I

0.3 i l
.

- true
09 5 predicted CNN+DNN i

STRESS

0 0.2 0.4 0.6 0.8 1 1.2
STRAIN

Observing the microstructure enables prediction of microstructure variations
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Predicting the particular response to microstructure

Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.
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Trajectories of discrepancy from mean:
solid lines data, dashed: NN predic-
tion. Trajectories drift with accumulated
error. Plastic response is better than
Sachs or Taylor estimates.
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Physical symmetries

Satisfaction of physical constraints and symmetries is expected in
physical models and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

» Augment the dataset with many
examples of what should happen,

e.g. rotate the inputs and outputs
(soft and inefficient)
» Penalize loss / training objective

N 1
function (introduces a meta
N
parameter and can be hard to -
formulate) H :
» Embed the symmetry in the NN ! —

architecture so that the response
exactly preserves the symmetry
(can be hard to formulate)
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Objectivity and representation theory

We want to embed symmetries in the NN structure — so that
they are exact/not learned. Let's go back to classical theory...

Material frame indifference for constitutive function M(A)
GM(A)GT = M(GAGT) ,

for every member G of the orthogonal group.
Based on the spectral A = Z?:l Aja; ® a;j , and Cayley-Hamilton
theorems
3 > 1,5 2
A* —tr(A)A® + 5 (tr* A —trA%) A —det(A)l = 0

one can obtain a compact general representation/model form:

M(A) = (Z)l + (DA + (T)A> = > c(T)A

i

in form of unknown coefficient functions of invariants and a

known tensor basis. Inputs: scalar invariants Z & tensor basis B.
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A tensor basis neural network

A tensor basis neural network is an NN implementation of this
representation [LING JCP 2016],

where the coefficients are un-
known scalar functions of the
invariants Z = {lp, h, ...}

M= Z C,'(I)B,'

and a final merge/sum layer
associates ¢; with the tensor
basis B = {A% Al ...}

It is adept at representing the
response with exact invari-
ance / avoiding the need for

Outputs: | ¢ o

data augmentation for sym- O
metry. Merge: M= Y,eB;
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Graph-based convolutional neural networks

CNNs work great for structured grid/rastered image but the need
interpolation for mesh-based fields and do not inherently satisfy
invariance Go(e, )G = o(GeG™,GpG ™) where ¢ is the initial
microstructure. E.g. a polycrystal has obvious segmentation that
leads directly to graph.

Reducing the grains to nodes and
shared interfaces to edges has been
shown effective [VLAssis CMAME
2020]

However this approach loses infor-
mation (eg the details of the grain
and interface geometry) and hence
requires featurization.

We propose applying the graph convolutions directly the mesh
topology. This approach does not require featurization but can
benefit from it. It does not increase the number of parameters
since the same kernels are being employed.
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Graph-based convolutional neural networks

Graph based convolution layers/filters [KIPF & WELLING 2016]
can be applied directly to the graph based on the mesh topology :
elements are graph nodes and shared faces are graph edges.

Wy wg Wy w1y
Wy Ws We w1 w2 w1
w1 W2 W3 w1

CNN filter GCNN filter

The GCNN filter uses the same weights for all the neighbors, hence
it produces the same output when the image is rotated.
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Graph-based convolutional neural networks

GCNNs have similar performance to CNN with fewer parameters
and inherent invariance. Convergence with number of filters
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Graph-based convolutional neural networks

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the RNN-CNN pipeline)
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adding node volumes to image of orientation angles

The improvement is marginal but distinct for a NN that is already
fairly accurate.
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Full field predictions

An architecture similar to the one we used to predict system-level

evolution can be used to predict full-field (element/pixel level) evolution.
Inputs: pairs of

. e . history e(t;) image ¢(x1)
> image of initial microstructure
> system level strain history

. :
The image is fed to a

to process its latent features
but not reduce them to a list of scalars.

convolution
Perhaps the optimal number of filters is %‘m%‘,
related to the dimensionality of the la-

tent space of the microstructure in this m— p—
L 1

convolution

context. ———

ConvLSTM convolution

convolution

This is combined with the strain history
in a recurrent neural network, specifi-
cally a convLSTM, to produce the out- !

pUt.

. full field stress evolution
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Full field predictions

A convLSTM combines the RNN (time) and CNN (space) into
PDE-like model
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Conclusion
Applications:

» subgrid / multiscale surrogate
models

P structure-property exploration /
material optimization

> material uncertainty
quantification

Open/current issues:

» meta parameter / architecture
optimization

> interpretability ( latent space /
low dimensional manifold)

» training burden / multifidelity
(experimental-+simulation) data

rjones@sandia.gov
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