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Overview: Challenge

 Challenge:
o Detecting and Locating very weak seismic signals requires sensor fusion and utilizing more 

information for signal waveforms
o Uncertainty quantification is essential since decisions will have to be made based on limited 

knowledge about the complexities of the models, sensors, and data
o Historic data or simulations will need to be used to understand these complexities and 

synthesize them into simpler/tractable models that we can use for monitoring

 Potential Impact:
o Facilitate high consequence decision making by providing event information with well calibrated 

confidences for very weak signals in domains with little historic data
o Provide a framework for data fusion to integrate multi fidelity and phenomenology data
o Enable experimental design methods to quantify a monitoring network’s ability to detect events 

and test improvements to the network/processing system
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Overview: Approach

 The Bayesian Perspective:
o Probability distributions quantify uncertainty due to insufficient information 
o Bayesian methods for identification and estimation are critical to robust decision-making

 Target Contribution:
o Take a Bayesian approach to waveform processing to detect and identify weak seismic events 

while integrating various sources of uncertainty.
o Use a unique statistical framework and novel computational methods to make waveform-based 

Bayesian inference tractable
 General Approach:

o Formulate an inference problem based upon predicting waveform features instead of the 
waveforms themselves

o Simulate waveforms to build a statistical model of waveform features with uncertainty
o Use Sequential Tempered Markov Chain Monte Carlo to efficiently identify events
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Talk Outline

1. Formulation of Seismic Monitoring as a Bayesian Inference Problem
2. Feature-Based Bayesian Inference
3. Building the Feature-Based Inference Workflow
4. Example with synthetic data
5. Challenge with Real data
6. Future work and Conclusion
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BAYESIAN INFERENCE FOR SEISMIC EVENT 
LOCALIZATION
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The Bayesian Framework

Physics Model
Sensor Model
Uncertainty Model

Knowledge about where 
events are likely to occur

Updated knowledge about 
where a specific event occurred
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Background on existing Bayesian Seismic Monitoring Methods

Detection-Based
 Description

o Each station pre-processes their observed waveforms to extract arrival “picks”
o The likelihood of an event (or events) is based upon how well the observed arrival times 

correspond to arrivals from seismic waves generated by the event hypothesis
o Arrival time and detection uncertainty can be integrated into the model

 Examples: BayesLoc1, NET-VISA2

 Advantages
o Requires only a model of travel times and not the waveform

 Disadvantages
o Events that produce weak signals below the pick threshold cannot be detected, even when many 

sensors are combined
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Background on existing Bayesian Seismic Monitoring Methods

Signal-Based
 Description

o The likelihood of a candidate event (or events) is based upon comparing predicted waveforms 
given the event hypothesis, noise process, and other modeled uncertainty to the observed 
waveforms

 Example: SIG-VISA3

 Advantages
o Can integrate many sensors to detect low magnitude signals
o Waveform characteristics can contain useful information for event identification

 Disadvantages
o Requires learning and evaluating a generative model of the full waveform to compute the 

likelihood of the observed signal
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FEATURE-BASED INFERENCE
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Traditional feature-based inference (Approximate Bayesian Computation)
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Approximate Bayesian Computation:
 Likelihood free inference (i.e. no full generative 

model) can be done approximately if you have a 
model for a data statistic (Dobs).

 Requires that the method for computing Dobs is not 
Θ dependent e.g. mean of the data.

Likelihood

Posterior
Evidence

Prior

Hazra, Indranil, Mahesh D. Pandey, and 
Noldainerick Manzana. "Approximate 
Bayesian computation (ABC) method for 
estimating parameters of the gamma process 
using noisy data." Reliability Engineering & 
System Safety 198 (2020): 106780.



General feature-based inference

11

Event Parameters Signal Features Signal Waveform
Graphical Model:

Bayesian Inference:
 Feature-based inference requires building statistical models for the likelihood of a signal given 

certain features and the likelihood of those features given an hypothesized event parameterization.
 Features can be θ dependent.

Likelihood

Posterior
Evidence

Prior

Marginalize over features

Signal Likelihood Feature Likelihood



Feature Based Inference for Seismic Monitoring
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Pre-signal background P Between
P and S

S Post-event background

P Duration

S Arrival
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P Arrival
Time

S Duration

Example Waveform
 Waveform Features

o P and S arrival time
o Waveform feature 

within window e.g. total 
signal power or power 
within a band.

 P and S arrival times and 
uncertainty can be found 
using models like AK135

 We can build a statistical 
model for the signal power 
using simulations and 
background models.
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BUILDING FEATURE-BASED WORKFLOW
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Data driven workflow
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Bayesian Inference Problem

 Parameters
o Event Parameters: Latitude, Longitude, Depth, Magnitude, Origin Time
o Uncertainty Parameters: Travel time uncertainty

 Feature Model
o AK135 for mean travel time and approximate travel time uncertainty
o Waveform Simulations build signal power distribution as a function of distance from the source 

and marginalize over sources of uncertainty like focal mechanism, stochastic earth model.

 Background Noise Process
o Assume a process modeled as a stationary Gaussian process within each window with known 

covariance
o Independent of the event signal
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Building Feature Model
Simulation Environment

 2D waveform simulations4 on 300 km x 60 km domain from Crust 1.0 cross-sections of Utah
 Simulated 1k events at 10 sensors with uniformly distributed event and focal mechanism parameters

16

Ti
m

e 
(S

ec
)

D
ep

th
 (k

m
)

X Position (km) X Position (km) X Position (km)

Log Surface
Power

Density Model Wavefield

Reflections off
upper layers 
and surface

0-100 200 0-100 2000-100 200

D
ep

th
 (k

m
)

60 60

00

80

0

S Wave

P Wave

S Arrival

P Arrival

4Li, Dunzhu, et al. "Global synthetic seismograms using a 2-D finite-difference method." (2014)



Building Feature Model
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Extracting Waveform Features

 P and S travel times, uncertainty, and 
assumed duration define possible window 
arrangements

 The window arrangement which contains the 
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SYNTHETIC EXAMPLE
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Example 1: Well identified strong signal
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Example 2: Weak signal with more variance 
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CHALLENGE MOVING TO REAL DATA
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Synthetics vs Reality

 Identifying features that are robust to modeling 
uncertainty is very difficult.

 Changing just the scale of stochastic earth 
model perturbations can significantly change 
the signal power distribution.
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Synthetics vs Reality
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FUTURE WORK AND CONCLUSION
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Conclusion

 Bayesian inference provides a natural way to express and propagate uncertainty for seismic 
monitoring and decision-making

 Feature-based inference provides a rigorous way to infer event characteristics from limited data, if 
we can identify robust features.

 We have not yet identified features that are robust to source and earth model uncertainty.
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