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= Challenge:

o Detecting and Locating very weak seismic signals requires sensor fusion and utilizing more
information for signal waveforms

o Uncertainty quantification is essential since decisions will have to be made based on limited
knowledge about the complexities of the models, sensors, and data

o Historic data or simulations will need to be used to understand these complexities and
synthesize them into simpler/tractable models that we can use for monitoring

= Potential Impact:

o Facilitate high consequence decision making by providing event information with well calibrated
confidences for very weak signals in domains with little historic data

o Provide a framework for data fusion to integrate multi fidelity and phenomenology data

o Enable experimental design methods to quantify a monitoring network’s ability to detect events
and test improvements to the network/processing system
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= The Bayesian Perspective:
o Probability distributions quantify uncertainty due to insufficient information
o Bayesian methods for identification and estimation are critical to robust decision-making

=  Target Contribution:

o Take a Bayesian approach to waveform processing to detect and identify weak seismic events
while integrating various sources of uncertainty.

o Use a unique statistical framework and novel computational methods to make waveform-based
Bayesian inference tractable
=  General Approach:

o Formulate an inference problem based upon predicting waveform features instead of the
waveforms themselves

o Simulate waveforms to build a statistical model of waveform features with uncertainty
o Use Sequential Tempered Markov Chain Monte Carlo to efficiently identify events
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Formulation of Seismic Monitoring as a Bayesian Inference Problem
Feature-Based Bayesian Inference

Building the Feature-Based Inference Workflow

Example with synthetic data

Challenge with Real data
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Future work and Conclusion
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The Bayesian Framework

Data: D Likelihood: p (D | )

Physics Model
Sensor Model
Uncertainty Model

Posterior: p (6 | D)
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Bayes’ Theorem:

p(D|0)p(0)
p (D)

p(0| D)=

Knowledge about where Updated knowledge about
events are likely to occur where a specific event occ
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Detection-Based
=  Description
o Each station pre-processes their observed waveforms to extract arrival “picks”

o The likelihood of an event (or events) is based upon how well the observed arrival times
correspond to arrivals from seismic waves generated by the event hypothesis

o Arrival time and detection uncertainty can be integrated into the model
= Examples: BayesLoc!, NET-VISA?
=  Advantages

o Requires only a model of travel times and not the waveform
= Disadvantages

o Events that produce weak signals below the pick threshold cannot be detected, even when many
sensors are combined

Myers, S. C., Gardar Johannesson, and Robert J. Mellors. “BayesLoc: A robust location program for multiple seismic events given

an imperfect earth model and error-corrupted seismic data” (2011)

2Arora, Nimar S., Stuart Russell, and Erik Sudderth. "NET-VISA: Network processing vertically integrated seismic analysis" (2013) '
- - - _____________________________________N_/
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Signal-Based
=  Description
o The likelihood of a candidate event (or events) is based upon comparing predicted waveforms

given the event hypothesis, noise process, and other modeled uncertainty to the observed
waveforms

= Example: SIG-VISA3
=  Advantages

o Can integrate many sensors to detect low magnitude signals

o Waveform characteristics can contain useful information for event identification
= Disadvantages

o Requires learning and evaluating a generative model of the full waveform to compute the
likelihood of the observed signal

3Moore, David A., and Stuart J. Russell. "Signal-based Bayesian seismic monitoring" (2017) ]
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FEATURE-BASED INFERENCE
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Traditional feature-based inference (Approximate Bayesian Computation)

Approximate Bayesian Computation:

Likelihood free inference (i.e. no full generative

model) can be done approximately if you have a

model for a data statistic (D).

Requires that the method for computing D, is not

© dependent e.g. mean of the data.
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Hazra, Indranil, Mahesh D. Pandey, and
Noldainerick Manzana. "Approximate
Bayesian computation (ABC) method for
estimating parameters of the gamma process
using noisy data." Rellab/l/ty EP nee! mg, &
System Safety 198 (2020) 05y 4
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Graphical Model:

Event Parameters Signal Features Signal Waveform

=  Feature-based inference requires building statistical models for the likelihood of a signal given
certain features and the likelihood of those features given an hypothesized event parameterization.

Bayesian Inference:

= Features can be 6 dependent.

Likelihood Prior

1 A Signal Likelihood Feature Likelihood
(Y | 0)p(6) [ . \——— 0
201 1) =P = ([T TERE Taar) 20y
Post'erior ‘_'_’ | /

Evidence Marginalize over features
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P Duration S Duration
=  \Waveform Features — —

o PandS arrival time - Example Waveform
o Waveform feature i

within window e.g. total
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= PandS arrival times and
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BUILDING FEATURE-BASED WORKFLOW




Data driven workflow

Model and Event
Prior Information

Waveform
Simulations

Extract Waveform
Features from
Data

Background Noise
Model

Event Waveform
Feature
Distribution

Waveform
Likelihood
Function
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= Parameters
o Event Parameters: Latitude, Longitude, Depth, Magnitude, Origin Time
o Uncertainty Parameters: Travel time uncertainty

= Feature Model
o AK135 for mean travel time and approximate travel time uncertainty

o Waveform Simulations build signal power distribution as a function of distance from the source
and marginalize over sources of uncertainty like focal mechanism, stochastic earth model.

=  Background Noise Process

o Assume a process modeled as a stationary Gaussian process within each window with known
covariance

o Independent of the event signal
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Simulation Environment
= 2D waveform simulations? on 300 km x 60 km domain from Crust 1.0 cross-sections of Utah

=  Simulated 1k events at 10 sensors with uniformly distributed event and focal mechanism parameters
O i
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Depth (km)
Depth (km)
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4Li, Dunzhu, et al. "Global synthetic seismograms using a 2-D finite-difference method." (2014




Building Feature Model

Extracting Waveform Features

= P and S travel times, uncertainty, and
assumed duration define possible window
arrangements

= The window arrangement which contains the
maximum event power is extracted
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Extracting Waveform Power

Simulated Signal
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KDE Model for p(F | 0)

= Use the maximum event power to fit a Kernel Density (KDE) model for events at similar distances
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SYNTHETIC EXAMPLE




Example 1: Well identified strong signal
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CHALLENGE MOVING TO REAL DATA




Sandia
Synthetics vs Reality ) i

Effect of increasing scalefac. increases downward and bottom trace is observed
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= Changing just the scale of stochastic earth
model perturbations can significantly change
the signal power distribution.
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Synthetics vs Reality (rlh)
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FUTURE WORK AND CONCLUSION
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= Bayesian inference provides a natural way to express and propagate uncertainty for seismic
monitoring and decision-making

=  Feature-based inference provides a rigorous way to infer event characteristics from limited data, if
we can identify robust features.

=  We have not yet identified features that are robust to source and earth model uncertainty.




