

Exceptional service in the national interest

Sandia
National
Laboratories

A Peridynamic Model of Degradation in Concrete

USNCCM 2021

Presenter: Jeremy Trageser

Collaborators: Reese Jones, Jessica Rimsza, Joshua Hogancamp

Outline

1. Motivation
2. Background
3. Model
4. Sensitivity analysis and uncertainty quantification
5. Future work
6. Conclusions and Acknowledgments

Motivation

- Ordinary Portland cement is commonly a primary component in infrastructure such as buildings, bridges, and dams.
- Environmental conditions such as exposure to water can weaken concrete structures.
- A model that couples chemistry and fracture is crucial for safe infrastructure design as well as for ensuring long-term reliability.

Background

- The mechanisms of cement degradation are complex.
- We focus on one aspect of cement degradation: decalcification due to Portlandite dissolution.
- Decalcification degrades the mechanical properties of the cement.
- In this presentation we explore a chemo-mechanical model employing the peridynamics framework to describe cement degradation and fracture.
- We adopt a minimally complex model in two dimensions to facilitate uncertainty quantification.

Five fundamental aspects of degradation in ordinary Portland cement included in the model are

1. Softening: decrease of elastic modulus E .
2. Weakening: decrease of fracture toughness K_{Ic} and compressive strength σ_c .
3. Shrinking: decrease of stress-free reference volume α .
4. Increased permeability/diffusivity D of water.
5. Increased cement-water reactivity K .

Model (mechanical)

The mechanics portion of our model is an adaptation of the well-known prototype microelastic brittle model:

$$0 = \int_{\mathcal{H}_x} k s(\xi, \eta) \mu(t, \xi) \frac{\eta + \xi}{\|\eta + \xi\|} d\mathbf{x}' + \mathbf{b}(\mathbf{x}, t), \quad (1)$$

where k is the bond stiffness constant, \mathbf{x} is a material point, \mathbf{u} is the displacement field, $\xi = \mathbf{x}' - \mathbf{x}$, $\eta = \mathbf{u}(\mathbf{x}', t) - \mathbf{u}(\mathbf{x}, t)$, \mathcal{H}_x is the neighborhood of \mathbf{x} , \mathbf{b} describes the body forces, α is a shrinkage parameter,

$$s(\xi, \eta) = \frac{\|\eta + \xi\| - (1 + \alpha)\|\xi\|}{(1 + \alpha)\|\xi\|}, \quad (2)$$

and

$$\mu(t, \xi) = \begin{cases} 1, & s_{\min} < s(t', \xi) < s_{\max} \quad \text{for all } 0 \leq t' \leq t, \\ 0, & \text{otherwise} \end{cases} \quad (3)$$

Model (chemistry)

We employ a non-dimensional degradation parameter \underline{c} correlated with the C/S ratio such that $\underline{c} = 1$ in pristine material and $\underline{c} = 0$ in fully degraded material. This parameter is described by

$$\dot{\underline{c}} = -Kv(c)\underline{c}, \quad (4)$$

where c is the concentration, v is a step function, and K is the reaction rate. The concentration is described through a nonlocal diffusion model:

$$\dot{c}(\mathbf{x}, t) = \int_{\Omega} \kappa \frac{c(\mathbf{x}, t) - c(\mathbf{x}', t)}{\|\boldsymbol{\xi}\|} d\mathbf{x}', \quad (5)$$

where κ is a bond diffusion parameter.

Chemical degradation of parameters

We adopt a linear model for the degradation of the parameters:

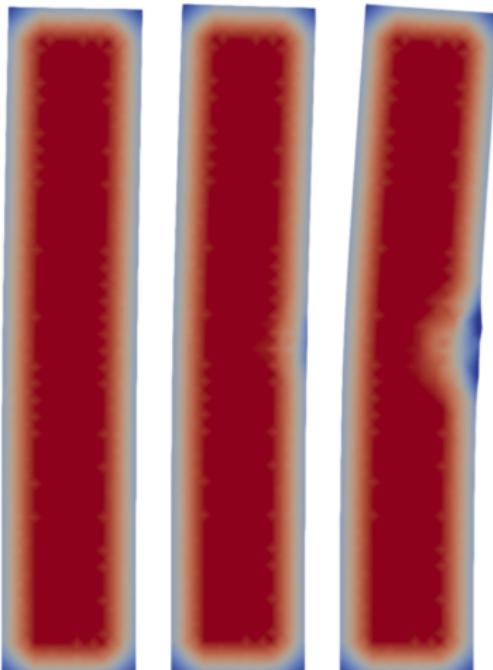
Mechanical model parameters:

$$k = \bar{k} + \Delta k(1 - \underline{c}) \quad (\text{bond stiffness})$$

$$s_{\min} = \bar{s}_{\min} + \Delta s_{\min}(1 - \underline{c}) \quad (\text{crit stretch lower bound})$$

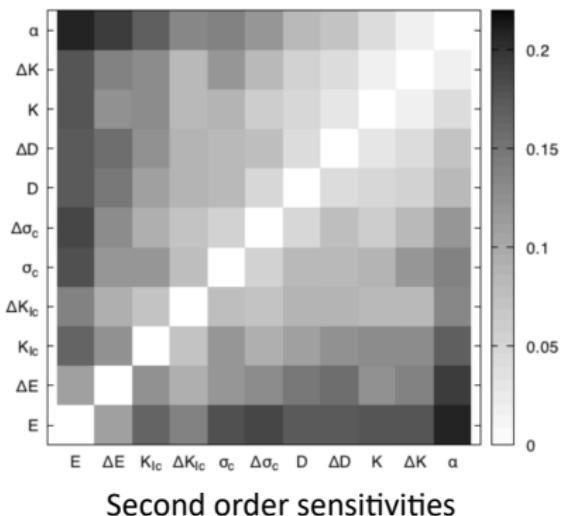
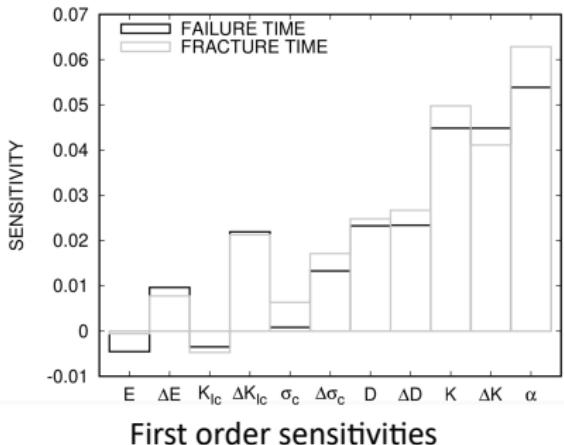
$$s_{\max} = \bar{s}_{\max} + \Delta s_{\max}(1 - \underline{c}) \quad (\text{crit stretch upper bound})$$

$$\alpha = \Delta \alpha(1 - \underline{c}) \quad (\text{shrinkage parameter})$$

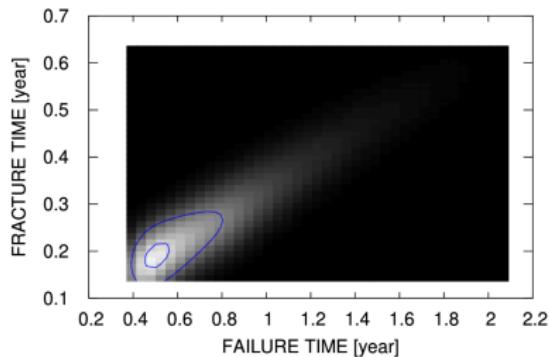

Transport model parameters:

$$\kappa = \bar{\kappa} + \Delta \kappa(1 - \underline{c}) \quad (\text{bond diffusion})$$

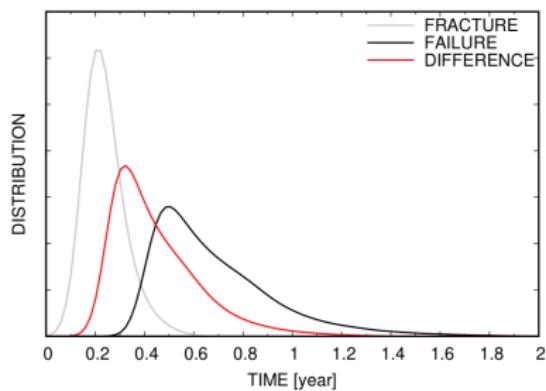
$$K = \bar{K} + \Delta K(1 - \underline{c}) \quad (\text{reaction rate})$$



Simplified simulation of a bridge support

- A vertical 4 cm \times 24 cm simply supported beam under static load that pre-compresses the beam to 10% of failure at nominal strain.
- The beam starts to buckle due to chemical attack at a point midway up on the right side due to a localized water source modeling a permeable flaw in the surface.
- The support is colored by the damage field.


Sensitivities

- We investigated first and second order Sobol sensitivities.
- Performed 240,000 independent simulations sampling uniform distributions for each parameter.
- Chemical and transport parameters were generally more influential than the mechanical parameters.



Uncertainty Quantification

- Performed 20,000 independent simulations drawing parameter values using Latin hypercube sampling.
- The joint distribution indicates the time-to-fracture and time-to-failure are strongly correlated and that there is significant variance in the outcomes.
- The marginal distributions resemble log-normal distributions and shows a steep onset for both the time-to-fracture and the time-to-failure, and particularly long tail to time-to-failure distribution.

Joint Distribution

Marginal Distribution

- Implement a three-dimensional degradation model into the open-source software Peridigm.
- Implement an aggregate model for degradation.
- Extend the model to the multiple reactions that describe complete degradation.
- Model validations with truly long term “natural” experiments.

Conclusions

- Developed a peridynamic chemo-mechanical model of the main phenomenological effects of water induced degradation of ordinary Portland cement.
- Calibrated the model to experimental data from the initial state of cement degradation, dissolution of Portlandite.
- Conducted sensitivity analysis and uncertainty quantification with eleven distinct parameters and their cross terms.

Acknowledgments

This work was fully supported by the Laboratory Directed Research and Development program of Sandia National Laboratories under Project 213007.