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Three-dimensional magnetohydrodynamic

modeling of auto-magnetizing liner implosions
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‘ Magnetized Liner Inertial Fusion (MagLIF!):
2 | Magnetic compression of premagnetized, laser-preheated fusion fuel

* Premagnetization?: 10-20 T quasi-static axial
magnetic field, B o, is applied to thermally insulate fuel

Reduces required implosion velocity compared to laser ICF

= Laser preheat’: The fuel is pre-heated using the
Z-Beamlet Laser (4 kJ)

Reduces required compressive heating compared to laser ICF

= Compression: Z Machine drive current
implodes liner, ~18 MA in 100 ns

= Adiabatically compresses fuel to thermonuclear conditions

Deuterium-gas-filled
beryllium liner
(cylindrical tube)

IS. A. Slutz et al., Phys. Plasmas 17, 056303 (2010). 2Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014). 3 Harvey-Thompson et al., Phys. Plasmas 26, 032707 (2019).



‘ Magnetized Liner Inertial Fusion (MagLIF!):
3 I Magnetic compression of premagnetized, laser-preheated fusion fuel

Frasren s Nearing upper limit using coils ...ccovvecrriinnncnn. :

= .. ——
.= Premagnetization?: 10-20 T quasi-static? axial _
. magnetic field, B (, is applied using external field coils :

External
capacitor bank

~3 ms rise time?

Calculations indicate that B, o =30-50 T
would improve thermal insulation of fuel
and increase fusion yield

Copper coils block radial x-ray diagnostic access -

Extended pulsed power feed reduces current coupling to liner/target

IS. A. Slutz et al., Phys. Plasmas 17, 056303 (2010). 2Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014).



Auto-magnetizing (AutoMag) liners offer an alternative
to external coils with several potential advantages

Magnetize the target using
the pulsed power driver
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G. A. Shipley et al., Physics of Plasmas 25, 052703 (2018). S. A. Slutz et al., Phys. Plasmas 24, 012704 (2017).




Radiography™* diagnosed implosion dynamics of first ever AutoMag liners on Z
5 |- a unique dataset for multi-physics code comparisons
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12-frame visible spectrum gated imaging

The “end state” of the

5 ns frames | ~50 micron resolution

<1 MA experiments on Mykonos have informed
“initial” conditions for 3D implosion simulations

Quasi-uniform photoemission from
outer surface of target indicates:

Surface flashover

v

Insert a conductive, post-
breakdown layer of material on
the outside surface of the target
flashover process at experimentally-inferred time

of flashover



Initialize post-flashover state in liner according to

tprear Inferred from microBdot data 16
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Initialization of post-flashover state has resulted in improved
s | comparison with experimental data
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Compression of insulator-filled helical gaps (the “primary helices™) is captured in simulations

Secondary helical structures are apparent, but appear broader than in data
—> Replication of “secondary helices” in radiography data has not yet been accomplished



3D MHD simulations suggest that driver-target changes can improve

field production and implosion dynamics

Increased metal fraction in the target

73347 target modified target
(500-um helical gaps) (200-um helical gaps)

3D simulations: decreasing the size of the insulator filled
gaps improves cylindrical implosion uniformity

Makes target “look more like a normal cylindrical liner”

<1 MA experiments and MHD simulations suggest:

Very minor reduction in B, ;;,, per unit drive current (<10%)
Flashover initiates at similar time and in the same fashion

Access higher dlI/dt earlier in the pulse
(at lower current)

18 Drive Current Pulses
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* Reaching the threshold dI/dt for flashover at lower
current promotes flashover initiation at lower B, ;,,
* Recall: AutoMag on Z produced >150 T
but 30-50 T is ideal for MagLIF



3D MHD simulations suggest that driver-target changes can improve
o | Tfield production and implosion dynamics
73347 (shaped) pulse Short Pulse, 200-um gaps
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* Use of short pulse instead of shaped pulse reduces perturbation on |

inner wall (black squares vs. blue circles)
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* Reducing helical gaps (increased beryllium fraction in target)
further decreases inner wall perturbation amplitude



3D MHD simulations suggest that driver-target changes can improve
field production and implosion dynamics

73347 (shaped) pulse
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Short Pulse, 200-um gaps
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7000 * Higher dI/dt accessed earlier in short pulse indicates that
flashover would initiate near ~35 T

* Compare to predicted ~120 T for shaped pulse
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: * ALEGRA simulations suggest ~50 T precompressed field
v * Compare to predicted ~130 T for shaped pulse




2 Summary and conclusions
1

* 3D MHD simulations (ALEGRA) can be 1nitialized based on multi-frame gated

imaging data captured in <1 MA, 100 ns flashover experiments
* Improved comparability with ~20 MA, 100 ns implosion experiments

* Simulations indicate opportunities to improve magnetic field production
* Use of 100 ns “short pulse” (eliminating 1-2 MA, 100-200 ns prepulse) results in
flashover at lower internal field (30-50 T) better suited to MagLLIF

* Simulations indicate opportunities to improve implosion dynamics
* Increased Be fraction in target (reduce helical gap width) combined with “short
pulse” results in increased cylindrical implosion uniformity

Thank you for your attention! Questions?



