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Motivation

• A trend towards decentralization in the power industry opens up new vulnerabilities.  

• We investigate the possibility of defending distribution power systems using a deep 
reinforcement learning DRL agent who has control of a collection of utility-owned 
distributed energy resources (DER).

• Prior work showed that a DRL agent can learn to stabilize a modified version of the IEEE 13
-bus system with coarsely discretized bus states.
• Discrete state and action space

• In this work, we allow the agent to set bus states to values over a continuous range. 
• Continuous state space
• Hybrid action space (both discrete and continuous actions

• We train a DRL agent to stabilize the bus system using several continuous space algorithms 
and compare performance with agents trained on the discretized system. 

• This work takes an additional step towards a more realistic multi-player distribution system 
control game
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Reinforcement Learning Interaction Protocol
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action

observation (state), 
reward

environment
agent

(wants to maximize reward)

Action Left Down Up Right

Probability 0.4 0.1 0.2 0.3



Environment
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Real Power

Reactive Power

Valid bus states fall inside or 
on the unit circle



Environment
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Environment

• There is voltage regulation equipment on the 
IEEE 13-bus model. 
• Capacitor banks provide reactive power 

to boost the voltage locally. 
• On-load tap changing transformers (LTCs) 

adjust the number of windings on the 
transformer to correct low/high voltages. 
These are non-linear devices that would 
make strange discontinuities in the 
reward surface

• The system was placed in an under-voltage 
state to drive the need for adjustment.

• We comment out the LTC for now.

• We use OpenDSS to simulate this model. 
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Previous Work

• A different subgroup trained a Deep Q-Network (DQN) agent to 
stabilize modified version of the IEEE 13-bus system with coarsely 
discretized bus states.
• The only allowable bus states were the ‘corners’ of the unit circle: 

(0,0), (1,0), (0, 1), (-1,0), (0,-1)

• We use the DQN agent’s performance in this discrete environment as 
a baseline

• The state space for the continuous environment may have a different 
optimal configuration than the discrete environment. Since the 
optimal configuration in the discrete environment is a valid state in 
the continuous environment, we expect our agent to find a 
configuration that is at least as good as the configuration DQN finds 
in the discrete environment.
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Hybrid* Action Space
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Experiments

• Train 10 different agents using 
SAC/DQN and compare their 
performance
• SAC operate in continuous environment
• DQN operate in discrete environment

• Cannot compare scores directly
• Starting in a more favorable state will 

generally result in a higher episode score
• SAC agent has access to more states than 

the DQN agent

• Assess performance at test time by 
looking at the score of the final state of 
each episode.
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The score of random state in the 
continuous environment has less 

variance than a random state in the 
discrete environment. 



Experiments: Performance

• Solid lines indicate average score over 10 runs
• Shaded belt indicates +/- one stdev

• Note the different axis scales
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Experiments: Quality of Final Configurations

• SAC converges to a better final state, but takes more steps to reach 
it. Hence, SAC converges to a larger final score than DQN
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Experiments: Final Configurations
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Heat map of final state configurations for SAC in continuous environment

Final state configurations for DQN in discrete environment

Horizonal Axis: 
Real Power

Vertical Axis:
Reactive Power



Conclusions

• DRL agents can learn to stabilize a more realistic/complex power 
system environment with a continuous state space and hybrid action 
space.

• Another step towards more realistic multi-player distribution system 
control game which could train an agent to defend the power grid 
under a potential cyberattack.

• Future considerations:
• Study larger systems
• Study simple two-player settings
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