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Motivation

A trend towards decentralization in the power industry opens up new vulnerabilities.

We investigate the possibility of defending distribution power systems using a deep
reinforcement learning DRL agent who has control of a collection of utility-owned
distributed energy resources (DER).

Prior work showed that a DRL agent can learn to stabilize a modified version of the IEEE 13
-bus system with coarsely discretized bus states.

* Discrete state and action space

In this work, we allow the agent to set bus states to values over a continuous range.

* Continuous state space
* Hybrid action space (both discrete and continuous actions

We train a DRL agent to stabilize the bus system using several continuous space algorithms
and compare performance with agents trained on the discretized system.

This work takes an additional step towards a more realistic multi-player distribution system
control game
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Environment

* State space: A list of n coordinate pairs (x,y) inside or on

the unit circle
* 1n = number of buses

* X = active power
* y = reactive power

» Actionspace: {0,...,n — 1} X (x,y), where (x,Vy) is

inside or on the unit circle

* e.g. (7,(0.42, -0.24)) corresponds to setting the state

of bus 7 to (0.42, -0.24)

* Only one bus can be modified per step

* Initial state distribution: All bus states are initialized to a
point in or on the unit circle uniformly at random.
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Environment

* Reward: negative sum of squared errors of bus voltages compared to nominal voltage values.

n-1
r=-) -V
i=0

where V; and V;" are the voltage and nominal voltage of bus i, respectively.

* Horizon: T = 50 steps
* Objective: Maximize the expected discounted reward

T
] =Eg Zytrt
t=1

where y € (0,1) is a discounting factor

* Objective Interpretation: Stabilize the system by bringing voltages as close to nominal as possible.
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Environment

* There is voltage regulation equipment on the
IEEE 13-bus model.

* Capacitor banks provide reactive power
to boost the voltage locally.

* On-load tap changing transformers (LTCs)
adjust the number of windings on the
transformer to correct low/high voltages.
These are non-linear devices that would
make strange discontinuities in the
reward surface

* The system was placed in an under-voltage
state to drive the need for adjustment.

e We comment out the LTC for now.

* We use OpenDSS to simulate this model.
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Previous Work

* A different subgroup trained a Deep Q-Network (DQN) agent to
stabilize modified version of the IEEE 13-bus system with coarsely
discretized bus states.

* The only allowable bus states were the ‘corners’ of the unit circle:
(0,0), (1,0), (O, 1), (-1,0), (O,-1)

* We use the DQN agent’s performance in this discrete environment as
a baseline

* The state space for the continuous environment may have a different
optimal configuration than the discrete environment. Since the
optimal configuration in the discrete environment is a valid state in
the continuous environment, we expect our agent to find a
configuration that is at least as good as the configuration DQN finds
in the discrete environment.



Hybrid* Action Space &
M.DL
* Action space contains both discrete and continuous components.

* Algorithms specifically designed for hybrid action spaces such as Multi-Pass DQN
(MP-DQN) are slow and will not scale to larger systems with large discrete action

components.

* Instead, we generalize policy gradient methods to hybrid action spaces using a
simpler approach [https://arxiv.org/pdf/1511.04143.pdf]:
* For discrete action: Use n output weights followed by a softmax activation and then sample

from the resulting distribution.
* For continuous action: output two continuous values —a mean and variance — for each
action, and then sample from the Gaussian distribution parametrized by the outputted mean

and variance.

* We apply this to Proximal Policy Optimization (PPQO), Deep Deterministic Policy
Gradient (DDPG), and Soft Actor-Critic (SAC). We focus on SAC.

*In the RL literature, this is typically referred to as a ‘parametrized action space,’ where each discrete action choice is
parameterized by continuous actions. We prefer the term ‘hybrid” because in our setup, the discrete action is not explicitly

parametrized by the continuous actions.

8/26/2021 12:40 AM



Experiments

* Train 10 different agents using
SAC/DQN and compare their
performance

* SAC operate in continuous environment
* DQN operate in discrete environment

* Cannot compare scores directly

* Starting in a more favorable state will
generally result in a higher episode score

* SAC agent has access to more states than
the DQN agent

* Assess performance at test time by
looking at the score of the final state of

each episode.
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Rolling Episode Scores
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Experiments: Performance

openDSS
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* Solid lines indicate average score over 10 runs
* Shaded belt indicates +/- one stdev

* Note the different axis scales
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Experiments: Quality of Final Configurations z
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* SAC converges to a better final state, but takes more steps to reach
it. Hence, SAC converges to a larger final score than DQN
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Experiments: Final Configurations

Heat map of final state configurations for SAC in continuous environment
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Final state configurations for DQN in discrete environment
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Conclusions

* DRL agents can learn to stabilize a more realistic/complex power
system environment with a continuous state space and hybrid action
space.

* Another step towards more realistic multi-player distribution system
control game which could train an agent to defend the power grid
under a potential cyberattack.

* Future considerations:
* Study larger systems
* Study simple two-player settings



