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3 ‘ Motivation: Automated Response in a Cyber System
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+ I Motivation: System Emulation

Virtualized
System

System Sensors




s I Motivation: Generating Enough Data

Generate All Data Through Emulation?
> Too Slow

Perturb the Existing Data? |

o Results in Samples with Inverted Timeline or Missing/Unordered Variables

Use Existing Deep Learning Methods for Data Generation?
o Image Data # Multivariate Timeseries Data
o Large Training Dataset Requirements I



s | GAMVT: Generative Algorithm for MultiVariate Timeseries
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7 1 GAMVT: Preprocessing

Maintain Certain Data Artifacts
o Data Types
o Sample Shape

Simplify the Data
o Better Captures Trends
o Improves Results of First Step of Characterization: Timeseries Clustering




s 1 GAMVT: Characterization

1. Timestep Clustering with TICC*
> How do variables relate to each other in a given cluster?
> Additional Subdivision of Samples by Cluster Label

2. Pattern Inference and Section Statistics
o What order do sections appear in?
> How long are those sections?

3. Value Statistics

=

B

> What trends exist in the preprocessed data, per-class and per-cluster?

o Mean, Minimum, Maximum for each variable

* D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz Inverse Covariance-Based Clustering of Multivariate
Time Series Data”, 2017. [Online]. Available: arXiv.org, https://arxiv.org/abs/1706.03161.

Call “Value Statistics”
something more specific




9 ‘ Class Characterization
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0 I GAMVT: Generation

Class 3

9 timesteps

\ 4

Class 3 Pattern

Pattern=[A[BA]"2]

Section Stats ={ A : [1, 3];B:[2, 4] }

Length = 9 timesteps

Class 3 Section
Statistics

A\ 4

Class 3 Value
Statistics
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Covariance Matrices
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GAMVT: Postprocessing

Undo Preprocessing
o Undo Simplifications
o Reinforce Data Types

Smooth Generated Results
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2 I GAMVT-Generated Sample

Training Set:

Generated
Sample:
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i3 1 Use Case: Space-Cyber System

NASA-Developed satellite emulation — NOS3

Variables from System Sens
o GPS

o X, Y, Z position components
o X, Y, Z velocity components
o Camera

o On/Off state
o Memory usage

COSMOS
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Sample Classes
> 1 baseline, 3 attacks
> 50 samples total
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4 1 Visualized Data Sample

X, Y, Z Coordinate Position Data

X, Y, Z Coordinate Velocity Data

Camera On/Off State

Camera Memory Usage

(Reserved for Future Usage)

Timestamps

Generation Objective: To generate samples that differ from the real data, but which
are similarly smooth and contain similar features to the real data.

|
|
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s 1 Deep Learning Approaches

Generative Adversarial Network I

Real data

Variational Autoencoder |
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7 ‘ Results

Real Data GAN Generated Data VAE Generated Data | GAMVT Generated Data
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Quality 0.7875 0.4775 0.7513
Diversity --- 23.2840 24,1815 1.4388
Results from “Threat Data Generation for Space Systems”, Space Computing Conference, 2021. L



18 I Future Work

Test Generated Data with Downstream Process

Support More Complex Datasets :
o Improve handling of oscillatory data
o Test and Develop with more complex relationships

o Expand support for a variety of generated distributions

Develop Methodology for Finding the Best Set of Pre/Post-Processing
Functions I



Comments and Questions to jthorpe@sandia.gov




