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Motivation: Automated Response in a Cyber System

Historical Threat Data – 
Learn what Threats 

Look Like

Mitigation Playbook – 
How to Respond to 

Threats

Automated Response Tool – 
Identify Threat and Respond

Live Data which 
Triggers an Alert

Response/Mitigation

Helps Determine…

Informs Classification…
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Support 
Situational Awareness 

and Improve 
Resilience to Cyber Attack

 or Other Events



Motivation: System Emulation

Virtualized 
System

System Sensors

Attack
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Motivation: Generating Enough Data

 Generate All Data Through Emulation?
◦ Too Slow

 Perturb the Existing Data?
◦ Results in Samples with Inverted Timeline or Missing/Unordered Variables

 Use Existing Deep Learning Methods for Data Generation?
◦ Image Data ≠ Multivariate Timeseries Data
◦ Large Training Dataset Requirements
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GAMVT: Generative Algorithm for MultiVariate Timeseries

Preprocess

Postprocess

Generate

Characterize

Training Samples

Generated Samples
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GAMVT: Preprocessing

 Maintain Certain Data Artifacts
◦ Data Types
◦ Sample Shape

 Simplify the Data
◦ Better Captures Trends
◦ Improves Results of First Step of Characterization: Timeseries Clustering
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GAMVT: Characterization

 1. Timestep Clustering with TICC*
◦ How do variables relate to each other in a given cluster?
◦ Additional Subdivision of Samples by Cluster Label

 2. Pattern Inference and Section Statistics
◦ What order do sections appear in?
◦ How long are those sections?

 3. Value Statistics
◦ What trends exist in the preprocessed data, per-class and per-cluster?
◦ Mean, Minimum, Maximum for each variable

* D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz Inverse Covariance-Based Clustering of Multivariate 
Time Series Data”, 2017. [Online]. Available: arXiv.org, https://arxiv.org/abs/1706.03161.
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Call “Value Statistics” 
something more specific



Class Characterization

A A A B B B A A A A A A B B B B A A A A B B A A B B A

Pattern = [ A [ B A ]1, 2 
]
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“ Each sample starts with a section of ‘A’, 
   followed by one or two repetitions of 
   a section ‘B’ and a section of ‘A’ ”

Section Statistics Value Statistics

A … …

B … …

Covariance ( A )
Covariance ( B )

A 1, 2[ B A ]



Class 3 Pattern

Class 3 Section 
Statistics

Covariance Matrices

Pattern = [ A [ B A ]1,2 ]
Section Stats = { A : [1, 3] ; B : [2, 4] }
Length = 9 timesteps

A B B B A A B B A

Class 3 Value 
Statistics A B B B A A B B A

Value Stats: Mean, Range for Variables in Each 
Cluster in Class 3

Covariance: How Do Variables Relate to Each 
Other?

A B B B A A B B A
10 0 0 0 10 10 0 0 10

2.0 2.5 4.0 5.5 7.0 7.5 8.0 11.0 14.0

3.5 7.5 8.0 7.0 3.0 3.5 7.0 7.5 4.0

Class 3 9 timesteps
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* Notional Example

GAMVT: Generation



GAMVT: Postprocessing

 Undo Preprocessing
◦ Undo Simplifications
◦ Reinforce Data Types

 Smooth Generated Results
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Training Set:

Generated 
Sample:

A B B B A A B B A

A A A B B B A A A A A A B B B B A 
A

A A B B A A B B A

GAMVT-Generated Sample12



Use Case: Space-Cyber System

 NASA-Developed satellite emulation – NOS3
 Variables from System Sensors

◦ GPS
◦ X, Y, Z position components
◦ X, Y, Z velocity components

◦ Camera
◦ On/Off state
◦ Memory usage

 Sample Classes
◦ 1 baseline, 3 attacks
◦ 50 samples total
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Visualized Data Sample

X, Y, Z Coordinate Position Data

X, Y, Z Coordinate Velocity Data

Camera On/Off State

Camera Memory Usage

Timestamps

(Reserved for Future Usage)

Generation Objective: To generate samples that differ from the real data, but which 
are similarly smooth and contain similar features to the real data.
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Deep Learning Approaches
Generative Adversarial Network

Variational Autoencoder

Real data
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GAMVT Results GAN VAE

Real data GAMVT
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Results

Quality                       --- 0.7875    0.4775           0.7513

Diversity                      --- 23.2840    24.1815           1.4388

Results from “Threat Data Generation for Space Systems”, Space Computing Conference, 2021.
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Future Work

 Test Generated Data with Downstream Process
 Support More Complex Datasets

◦ Improve handling of oscillatory data
◦ Test and Develop with more complex relationships
◦ Expand support for a variety of generated distributions

 Develop Methodology for Finding the Best Set of Pre/Post-Processing 
Functions
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Comments and Questions to jthorpe@sandia.gov
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