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Abstract—This paper presents a notable advance toward de-
velopment of a new method of increasing single-axis tracking PV
system power output by improving determination and near-term
prediction of optimum module tilt angle. The tilt angle of the
plane receiving the greatest total irradiance changes with sun
position and atmospheric conditions including cloud formation
and movement, aerosols and particulate loading, as well as
varying albedo within a module’s field of view. In this work,
we present a multi-input convolutional neural network that can
create a profile of plane-of-array irradiance versus surface tilt
angle over a full 180 degree arc from horizon to horizon. As
input, the neural network uses calculated solar position and
clear-sky irradiance values, along with sky images. The target
irradiance values are provided by the Multi-Planar Irradiance
Sensor (MPIS). In order to account for varying irradiance
conditions, the MPIS signal is normalized by the theoretical clear-
sky global horizontal irradiance (GHI). Using this information,
the neural network outputs a N -dimensional vector, where N
is the number of points to approximate the MPIS curve via
Fourier resampling. The output vector of the model is smoothed
with a Gaussian kernel to account for error in the downsamping
and subsequent upsampling steps, as well as to smooth the
unconstrained output of the model. These profiles may be used to
perform near-term prediction of angular irradiance, which can
then inform the movement of a PV tracker.

Index Terms—irradiance, deep learning, neural network, pho-
tovoltaics

I. INTRODUCTION

For any photovoltaic (PV) system, it is necessary to profile
the site in order to have a working knowledge of the solar
insolation available for various system configurations. It is
known that solar insolation is dependent on the angular
position of the plane of measurement [1]. The solar resource
profile is important for both fixed-tilt and tracking photovoltaic
systems, as it informs the optimal position of the modules; the
more irradiance the module receives, the greater the power it
generates. On clear-sky days, the irradiance versus tilt angle
profile is easy to predict from the sun’s position. However, on
partially or fully overcast days, the irradiance profile can be
severely distorted due to the obstruction and scattering of light
by clouds. The increase in diffuse light and reduction in direct
irradiance leads to a relative reduction in power conversion
efficiency for PV systems that continue to track the sun’s
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Fig. 1. ASI-16 sky images taken over a single day, 4/1/2020.

position throughout these conditions. Our calculations indicate
that optimal tracking of the angle of maximum irradiance (as
opposed to solar position) can increase the power production
of single-axis tracking PV systems by up to 2% per year, with-
out modification of the tracking mechanism. Here, we present
prediction of angular irradiance profiles from sky images. The
value of this approach is that the angular irradiance can be
informed in real time by local, observable weather conditions.
Therefore the use of sky images provides distinct advantages
over multi-angle irradiance sensors: 1) the sky camera involves
no moving parts and a single sensor to collect data, and 2) sky
images enable forecasting of future weather conditions, which
is not possible with real-time irradiance sensors.

A. Dataset

The dataset for this project consists of output from various
measurement devices, located in Albuquerque, New Mexico.
The first device is the ASI-16 sky camera. This camera
produces fisheye-style images of the sky, and is mounted at
a fixed point facing upwards. A collection of example sky
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Fig. 2. Sample MPIS profiles for different times on the same day. This day
is clear in the morning and progressively becomes more cloudy, which can be
seen in a decrease in peak insolation and the maximum of the curve shifting
towards the normal ( 180◦).

images from the ASI-16 sky camera, taken 4/1/20, is shown
in Fig. 1. Additionally, there are numerous pyranometers and
other weather sensors at the site, these can be used to verify
the normalization procedure.

The sensor that enables this study is the Multi-Planar
Irradiance Sensor (MPIS) developed by Augustyn & Company,
Berkeley, California [2]. This sensor takes single-axis sweeps
of the sky from the eastern horizon to the western horizon,
and records the irradiance profiles. This profiling provides
direct measurement of the angle of maximum Plane-of-Array
(POA) irradiance, and allows comparison of solar insolation
for different tracker positions for the same time. Fig. 2 shows
multiple MPIS curves on different times during the same day
as the sample of sky images shown in Fig. 1.

However, installing and operating MPIS units at individual
solar plants will add cost and complexity to plant operation.
While it is expected that ongoing improvement of the MPIS
design will result in cost reductions, the sky camera model
developed here also offers the potential of near term forcast-
ing of irradiance vs. tilt profiles as tracker control system
feedback, which the MPIS alone cannot do. In this work, we
use MPIS data as ground truth to build solar transposition
models from sky images at the same location. It is hoped
that co-location of MPIS and sky camera units at a limited
number of sites may be enough to train the model for more
universal application. Therefore we use this data as ground-
truth to build solar transposition models from sky images at
the same location, to simplify the data collection process for
determining the angle of maximum POA irradiance. Although
conventional sky imagers like the ASI-16 are quite costly as
well, we find that a less expensive option would be adequate,
as experimental study has shown that image resolutions as
low as 128x128 pixels are viable inputs to the model. In fact,
downscaling the image to a lower resolution both decreases
model training time and improves convergence; this effect is
common to convolutional neural networks applied to very high
resolution data. It is hypothesized that downscaling decreases

Fig. 3. Our classical image processing pipeline. A) the original image, B),
an image transformed to hue-saturation-value color space, C), an adaptive
threshold to extract clouds and D) location of the the sun via maximum
pixel intensity. Image D shows the sun location for a different original image
than the others because this method is prone to error in cloudy conditions,
especially when there is greater cloud cover

overfitting as the linear interpolation smoothes out camera
noise. As we are only concerned with the larger features (such
as cloud cover) and not detail, there is no significant advantage
to excessively high-resolution sky images.

As seen in the sky images in Fig. 1, the day shown begins
with some scattered clouds and progresses into heavy cloud
coverage. The corresponding MPIS curves in Fig. 2, show the
effects of this cloud coverage, such as reduced irradiance and
a trend towards horizontal in the afternoon. During clear-sky
conditions, MPIS curves in the afternoon achieve maximum
irradiance facing West (above 90◦).

B. Exploratory Data Analysis

The concept of extracting weather data from sky images has
been explored previously. Most approaches, such as Alonso
et al. [3] and Long et al. [4] use classical image processing
approaches to extract pertinent information, such as cloud
coverage and movements. These approaches focus on applying
multiple image filters and other transformations to individual
images, as opposed to a statistical learning technique like
deep neural networks. Inspired by these works, we conducted
exploratory data analysis on our images.

As shown in Figure 3, quite a bit of information can
be extracted from these images. The first area of focus is
identifying clouds in the images. This is a concern because
the presence of clouds in the sky will result in a different
irradiance profile from a clear sky. In the literature, cloud
area is generally extracted via a simple threshold; however, we
found this approach to be error-prone in RGB color-space. By
switching to hue-saturation-value (HSV) color space, we were



able to get a clear delineation between cloud and sky using
an adaptive intensity threshold operation for segmentation.
Although this method is simple, it can be prone to error
due to sub-optimal parameter choices. Additionally, since
the intensity of the images may change due to automatic
adjustments in the camera, it is difficult to choose a global
threshold for the entire dataset.

Another metric of importance is the location of the Sun.
As in [5], we locate the Sun in an image by thresholding
the red channel of the image; in a similar manner, we locate
the center of the sky by thresholding the blue channel. As
noted by Savoy et al., if cloud cover prevents visibility of the
Sun, this method becomes very error prone. However, image
detection of the sun’s position is unnecessary due to its ease
of calculation from the date/time and location of the camera.

As the central motivation of this work is to observe the
effects of cloud cover on irradiance profiles, classical image
processing methods alone are inadequate due to the limitations
listed above. Therefore we have developed a neural network-
based method for predicting angular profiles of POA irradiance
from sky images.

II. METHODOLOGY

In this work, we present a multi-input convolutional neural
network, shown in Figure 4, to predict irradiance profiles.
Multi-input neural networks have begun to gain traction in
other fields, such as identifying flowers from multiple different
angles [6]. This is a viable approach for sky images because
they contain a large amount of qualitative information about
the current status of the sky. Additionally, the multi-input
structure allows us to utilize additional information that is
relevant to the angular irradiance profile, such as calculated
solar position and clear-sky irradiance.

Convolutional neural networks are a method where a small
filter (also called a kernel) slides (convolves) over an image;
the output of this operation is a matrix where each entry is
the dot product of the filter and each set of points from the
image. This operation is expressed mathematically in Eq. 1.

(I ∗K)i,j =

k∑
m=1

k∑
n=1

Km,nIi+m−1,j+n−1 + b (1)

In this equation, I is the image (a matrix of shape (i, j)), b
is a bias term, and K is the kernel. In our neural network,
the kernel is usually of size (3,3) or (5,5). The weights of the
kernel (the numbers inside the matrix) are learned via back-
propagation like the weights and biases of a fully connected
layer.

The second input to the neural network is the position of the
sun relative to the sky camera, given in a spherical coordinate
system. The position of the sun in the sky can be calculated
for a given time of day by a variety of methods. In this
work, we use the solar position method presented by Reda
and Andreas of NREL [7], implemented in PVlib-python [8].
This calculation provides the location of the sun in terms of
zenith and azimuth, which is fed into the neural network in a

Fig. 4. The structure of our multi-input CNN. The number of neurons in the
output layer are a function of the resampling procedure; for a signal resampled
to N = 50 points, the final layer will have 50 neurons. Dropout and batch
normalization layers, omitted from this diagram, are included as well: batch
normalization following convolution layers and dropout after every other dense
layer.

multilayer perceptron-style sub-network. This sub-network can
be considered a parallel branch of the whole that is responsible
for its own specialized computation. We hypothesize that the
neural network uses this information to map the spherical coor-
dinates onto the image, thereby locating the sun irrespective of
cloud cover. In order to do so, the two sub-networks (the CNN
and the multilayer perceptron) are subsequently joined. This
concept was also developed independently by Paletta et al.
[9] in 2020, who used a similar data augmentation process for
irradiance prediction from sky images, but opted for additional
ResNet-like residual connections we found to be unnecessary.
Additionally, Paletta et al. directly predict irradiance, which is
not useful for our intended application, and is easily measured
via conventional instruments that do not provide information
on angular irradiance.

In the final combination step, dense (fully-connected) out-
puts of the two sub-networks are concatenated and fed into
a final sequence of dense layers, the output of which is a
regression vector of shape N , where N is the number of
points to approximate angles of irradiance. The MPIS sensor
samples 360 points over the 180 degree range from horizon



Fig. 5. Resampling MPIS signal via Fourier method

to horizon; that is, it samples at half-angles. However, that
level of specificity is difficult to predict because this is a high-
dimensional regression problem over the real numbers, which
is a continuous search space. The problem is then much more
difficult numerically than a classification problem as there are
not a discrete number of possible states. It is therefore useful to
approximate the curve with fewer points. Experimentally, we
have found that N = 90 is optimal; a finer regression results in
a model that is more difficult to train and prone to overfitting.
Thus, the target of the model equals the number of output
neurons equals N , as the MPIS curves are pre-processed prior
to passing them to the model.

The points in the training data are resampled using the
Fourier method, implemented in the scipy package, and the
model is then trained on the downsampled data, resulting in
an output of the same dimension. The Fourier downsampling
method simply transforms the data into the frequency domain
and removes the second and third groups of elements, which
are the half with the highest frequency components As the
data are real numbers, the FFT results in mirrored complex
conjugates in the lower half of the transformed space. Thus,
the middle 50% is removed to preserve this symmetry while
downsampling. This then removes the samples with the highest
frequencies. The results of this process are shown in Figure
5. In order to compare the downsampled output and the
true value, the model output is padded via equal repetition
of elements, or Fourier upsampling. However, this series of
transforms and the additional error in the predicted curves can
sometimes cause a jagged model output, whereas real anglular
irradiance profiles are smooth. Gaussian smoothing, a common
technique in image and signal processing, can be applied to
smooth the curve, assuming Gaussian error. This method is
calibrated by the σ parameter of the underlying distribution,
which specifies a higher or lower degree of smoothness. This
process can be seen in Figure 6.

Training this model requires a slight modification of gradi-
ent descent. This is because the model is split into two sub-
networks; typically, the model is sequential and the gradient

Fig. 6. Smoothing the model output using a Gaussian kernel

flows directly backwards, but here the model forks into two
branches. In this case, there are N outputs and 2 inputs. Thus,
the rule for gradient flow can be described using the Chain
Rule in Eq. 2

∂L
∂wi

=

N∑
n=1

∂L
∂yn

∂yn
∂wi

(2)

where L is the loss function, wi is a weight and yn is an output.
The loss function is mean squared error of the samples Yi:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (3)

In this manner, contribution to the overall loss (Equation 3) can
be calculated for each weight. As the loss propagates through
the network, both sub-networks are updated according to the
overall loss. Since the model outputs a vector, the total loss is
just the sum of the loss of the individual elements.

The normalization process constrains the value of each ele-
ment to be between zero and some constant ε, where ε depends
on the specific normalization procedure used. To reflect this
constraint, a custom activation function for the output is used.
Usually, no activation is provided for a regression output.
However, since the range of values is known a priori, we can
give the network a hint by applying the activation function in
Eq. 4

ε-ReLU(x) = min(ReLU(x), ε) (4)

where ε is set to the maximal acceptable value and ReLU(x)
is the standard Rectified Linear Unit activation function. For
example, if the data is normalized between 0 and 1, setting
ε = 1 will prevent the model from overshooting without
affecting the true values. Thus, the activation function is linear
over the range [0, ε], unlike the nonlinear sigmoid, which may
cause outputs to trend towards the extremes. Experimentally,
the addition of this activation function allowed the model
to converge faster than without. Additionally, if the model
encounters a severe outlier or other anomaly when predicting a
new sample, then the amount of possible error can be limited.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html


Fig. 7. A) Raw MPIS curves, and B) normalized MPIS curves that retain relative curve scaling

Fig. 8. Loss curves for two separate activation functions. The limited ε-ReLU
appears to add some stability to the training process.

Training curves for both the ε-ReLU and linear activation
functions can be seen in Figure 8.

Experimentally, it was found the ε-ReLU activation pro-
duced smoother output curves; although the exact cause is
uncertain, the current hypothesis is that it prevents overfitting
by working in conjunction with early stopping.

A particular issue of this model is that of normalization. The
MPIS signal is a function of raw irradiance values, which are
very difficult to predict from only a sky image as there is no
direct correlation between the image and the raw irradiance
values. Thus, the model would likely attempt to memorize
an irradiance/date/time mapping, which is difficult to learn
and very site-specific. Therefore, the MPIS signal should be
normalized or transformed to mitigate these problems. One
simple metric is to squeeze all values between zero and one via
min-max scaling. However, this is a lossy metric; for example,
solar noon and diffuse conditions can have MPIS curves
that are fairly similar in shape, but have drastically different
magnitudes. Notably, this issue does not impact the correct

angle of maximal irradiance; thus, predicting the argmax of
the MPIS signal is a significantly easier problem.

A different metric that preserves this magnitude difference
is the L2 norm, defined as ||x||2 ≡

√
x · x. The L2 norm is

a common baseline for normalization of an arbitrary vector.
Another choice may also be the infinity norm, which is
defined as ||x||∞ = max

i
(xi). This would essentially result in

normalizing by GHI on a clear day, giving the normalization
process physical meaning.

In fact, the ideal, clear-sky GHI is easily calculable for a
given time, latitude, and longitude; this work uses the Ineichen
model [10], implemented in PVlib-python. Normalizing by
this quantity results in a much smoother curve that preserves
relative magnitudes. Precisely, we normalize by the clear
sky GHI at solar noon; this results in all curves, regardless
of seasonality, to be within the same range of values. The
values range in magnitude from zero to about four, as seen
in Figure 7. This is because maximum value of the MPIS
signal (maximum POA irradiance) on a clear day will always
be greater than or equal to the projected clear-sky GHI.

Experimentally, each type of normalization has different
drawbacks. The min-max scaling method is simple, and does
preserve the correct maximum, but the resulting curve is often
much less smooth and lacks the ability to distinguish between
curves of the same shape and different magnitude. Clear-
sky GHI normalization was found to be the most optimal
in this work, but does involve some additional computation
and is dependent on correct calculation of clear-sky GHI.
Regardless of normalization method, the model accurately
produces the argmax of the MPIS signal, which is arguably
the most important point, as it represents the optimal real-time
angle for a single-axis tracker.

This work uses the Python programming language, and the
TensorFlow library with the Keras front-end. The model was
implemented using the Keras functional API for automatic
differentiation. The Adam optimizer was used for training with
mean squared error as the loss function. Gradient clipping



and weight decay were also used to aid the training process
and prevent exploding/vanishing gradients. An early stopping
callback was used to terminate the training process when the
validation loss does not improve for a set duration, as well as
restore the best set of weights on the validation set. Batch
normalization and dropout layers were used in addition to
convolution, pooling, and dense layers. The model was trained
with a custom generator function to operate in batch mode. A
Tesla V100 GPU with 32GB of VRAM was used to accelerate
training on Sandia’s deep learning platform, which is also
equipped with dual 24 core Intel Xenon Platinum CPUs with
1.5 TB of RAM.

III. RESULTS

The model was trained for 80 epochs, with 25 steps per
epoch and 8 samples per step, which is a total 16,000 samples.
The hyperparameter N , which controls the number of points
to estimate, was set to 90. As N increases, so does the time
to model convergence. Experimentally, a higher N results in
lower training loss, but higher validation loss, implying that
the optimal value lies somewhere in the middle of the range
[0,180].

An series of example results can be shown in Figure 9. All
samples shown are drawn from a period of about a month;
the model does capture seasonality effects, but it is easier
to interpret the model without seasonality. The curves very
clearly show that the model captures the general shape of the
angular irradiance profile, given the sky image and calculated
solar position. However, there does remain some error, partic-
ularly in magnitude, due to the high dimensionality required
as well as the complex up and down scaling required for
model convergence. Notably, without both the normalization
and downscaling steps (that is, asking the model to predict
the MPIS curves directly), the model fails to converge, even
if it is supplied the measured GHI, DNI, and DHI. Although
the problem is complex, there are actually a small number of
possible curves shapes in general. Thus, the model has three
”jobs”: learn possible shapes, match to current conditions,
and scale accordingly; however, as neural networks are ”black
box” models, it is impossible to confirm if these are truly the
concepts learned.

As mentioned above, the model learns shape quite well; as a
result, it can identify the angle of maximal irradiance with high
accuracy, as shown in Figure 10. A distribution of the absolute
error in the irradiance itself at the maximum point is shown in
Figure 11. As shown, the model performs exceedingly well,
as the vast majority of errors are less then 5 degrees off the
true value. This error can be considered basically negligible
in when considering tracker movement and precision.

Example error in irradiance for each predicted curve shown
in Fig. 9 can be seen in Figure 12.

The error appears to be most significant in the early morn-
ings and late evening. This is likely due to error in upscaling
to the true magnitude or an albedo effect. Additionally, Fourier
upsampling does cause some of the oscillation at the endpoints
as well. However, the model appears to capture the relevant

information for a near-term forecasting tracking algorithm
quite well.

The caveat to this model is that it is specific to the site
at which it was trained; conditions at a different geographic
location may or may not have similar angular irradiance pro-
files and will not have similar magnitudes. The normalization
process should remove error due to differing magnitudes, but
there may be additional seasonal or geographic effects that
the model has not yet seen. In the future, we plan to deploy
more MPIS sensors and sky cameras to verify these and other
assumptions about the model.

IV. CONCLUSION

In this work we have demonstrated a convolutional neural
network transposition model that can replicate the MPIS in-
strument signal (angular solar irradiance profiles) with high ac-
curacy using only sky images and calculable quantities, such as
the solar position and clear-sky GHI. We also present several
modifications of the traditional sequential convolutional neural
network pipeline, including multiple input branches, resam-
pling and smoothing techniques, custom activation functions,
and other adaptions to this particular problem. Without these
modifications, training the network proved to be impossible.

Overall, the model allows easy deployment and profiling
of angular solar irradiance in real time. In particular, the
model proved to be very accurate at predicting the real-
time angle of maximal plane-of-array irradiance, which is
the theoretically optimal angle of a single-axis tracker. In the
future, this information will be integrated into a single-axis
tracking algorithm in order to optimize tracker movements for
overcast sky conditions.
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Fig. 9. A) 10 randomly selected angular irradiance profile predictions for a variety of sky conditions. In the orange is a typical near solar noon with some
light clouds. The red is a cloudy morning, whereas the light blue is a bright, clear morning. B) The corresponding MPIS curves for the selected profile
predictions.
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Fig. 11. Histogram of absolute error in predicting the irradiance ath the angle
of maximum irradiance.

Fig. 12. Error for the same randomly selected test points
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