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Background

Wind Turbine Wake Diagnostics:

Lidar scan
geometry

Facility
° Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas, USA

o Characterization of the atmospheric conditions in [1], recent benchmarking
activities given in 2]

Lidar

° Continuous-wave DTU SpinnerlLidar [3] rear-mounted on WT'Gal

> Focus = 105 m from WTGal along the axis of the turbine rotor

> A rosette pattern is completed in 2 s and consists of 984 measurement locations, some
below ground

(Images from [9])

1. Kelley, C.L.. and B.L. Ennis, SWiIT site atmospheric characterization. 2016, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
2. Doubrawa, P., et al., Multimodel validation of single wakes in nentral and stratified atmospheric conditions. Wind Energy, 2020.
3. Mikkelsen, T., et al., .4 spinner-integrated wind lidar for enhanced wind turbine control. Wind Energy, 2013. 16(4): p. 625-643.



‘ Problem

Modern lidars show biases ~< 0.2-m/s and std. dev. ~< 0.20-m/s! depending mostly on the inhomogeneities in the flow

Largely unquantified errors stem from contamination by solid interference and amplitude noise

A
Raw spectrum

Power spectrum

Region
of
interest

vline—of—sight

Problem: how to extract true statistics of the region of interest (i.e., spectral median and spectral standard
deviation) while ignoring contamination from amplitude noise and solid interferencer

Solution: train a supervised regressive machine learning model based on a large database of synthetic spectra to
discern between true signal and interference for any likely spectral shape

1. Courtney, M., R. Wagner, and P. Lindelow, Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP Conference Series: Earth and Environmental Science, 2008. 1.



Reference Technique

Raw processing: subtract background noise and calculate quantities of interest (Qols)

11395 /11395 cases: R=0.39948, RMSE=>5.392
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Reference Technique

Quality control processing: subtract background noise, detect and (mostly) filter interference features, and calculate Qols

Spectral median Spectral standard deviation
11395/11395 cases: R=0.94678, RMSE=1.103 11395/11395 cases: R=0.5187, RMSE=0.7237
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Significant improvement, but we can still do better...



6 ‘ Algorithmic Approach Output Qs

Individual neural network architecture:

(ML eliminates
solid interference
and curve-fits the
amplitude noise)

Hidden layer architecture
. Six layers of perceptrons with 48 nodes each

Activation function

*  Sigmoid symmetric Network 1

Network 2
Performance function u\fs\"’" N - Network 3
« MSE o | Network 4
= ! Network 5
Backpropagation algorithm ?
* Levenberg-Marquardt 1
Ensemble neural network architecture: . otc.
[ ]
Number of ensembles i
* N = 64 (diminishing returns for N >32) '
Resampling technique for different ensemble members Network 64
*  Bootstrapping
¢
Statistics calculated across ensembles for each Qol

Input spectra

N

*  Mean, u
e Standard error, /YN — 1




7 | Data Description

Example Spectra (from field test):

1603: 2522: 1338:
£y = 0.0023-m/s, Eggger. = 0.0214-m/s &y, = -0.0462-m/s, £44.400. = 0.141-m/s & = 0.36-m/s, Egg 400, = -0.358-m/s
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2325: 1572: 2304:
Ey,, = -0.00732-m/s, &44dev. = 0.0161-m/s Epe = 0.101-m/s, Egiger. = 0.102-m/s &y = -0.0993-m/s, Egpgger. = -0.0637-m /s
«10% Eue = 0.0439-m/5, Ega.geo. = 0.0634-m/s %10 Eu, = 0.178-m/s, €stager. = 0.215-m/s «10* Eu,, = 0.0838-m/s, Euqder. = 0.099-m/s
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Signal of interest varies widely in shape but falls somewhere along the first 100 bins of the spectrum



s I Data Description

Histograms of measured spectral parameters:
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Measured data used to inform generation of synthetic database*

*Synthetic data has known ground truth parameters with artificial interference added



Data Description

Histograms of measured spectral parameters:
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Database of synthetic returns:

Baseline spectra:

s _ M0R01 e 2
ROI = ——— —
MZROI\/Zn

(this is a scaled epsilon-
skew-normal distribution?)

2
1( Vios—Migoy )

M3 por (1FMsgo;)

where...

Bin Count

M, is a magnitude parameter
Mj,, is a location parameter
M, is a width parameter

Bin Count

—_
ot
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o

ot

x 106

M3, is a skew parameter whose absolute value is less than

one, and the + takes the sign opposite of the numerator of

the exponent.

1. Mudholkar, G.S. and A.D. Hutson, The epsilon—skes—normal distribution for analyzing near-normal data. Journal of statistical planning and inference, 2000. 83(2): p. 291-309.




10 | Data Description

Histograms of measured spectral parameters:
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Database of synthetic returns:

Solid interference:

Dsolid
1+ (vlos - vsolid)/wsolid

Ssolid = where... Wgqjiq 1s the full-width half-maximum of the solid-interference spectrum
Psotig 1s the prominence of the solid interference

Vsotia 1 the velocity at Pgoiig



11 | Data Description

Histograms of measured spectral parameters:
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Database of synthetic returns:

Amplitude noise:

Snoise 15 the noise spectrum, which is generated given a variance within each spectral bin. The variance is here taken to be
uniform over the spectrum. Each synthetic spectra includes a different randomized distribution of Gaussian noise.



12 | Data Description

Database of synthetic returns:

Baseline spectra:

2
m 1 Vios—M1gor
__Oror e 2\mapor (1Fmapo;)

Sror = where...
My 0 I\/ 21
(this is a scaled epsilon-
skew-normal distribution?)
Solid interference:
_ Psolia
Ssolid = where...

1+ (vlos - 17solid)/Wsolid

Amplitude noise:

My, 18 a location parameter

My, 18 2 Width parameter

the exponent.

Vsolia 1s the velocity at Pgoiiqg

Mg, 1S 2 magnitude parameter

M3, 18 a skew parameter whose absolute value is less than
one, and the + takes the sign opposite of the numerator of

Wsoria 1s the full-width half-maximum of the solid-interference spectrum
Dsotlia 1s the prominence of the solid interference

Snoise 1 the noise spectrum, which is generated given a variance within each spectral bin. The variance is here taken to be
uniform over the spectrum. Each synthetic spectra includes a different randomized distribution of Gaussian noise.

The combined synthetic PSD:

S = Spor T Ssotid T Snoise

1. Mudholkar, G.S. and A.D. Hutson, The epsilon—sken—normal distribution for analyzing near-
normal data. Journal of statistical planning and inference, 2000. 83(2): p. 291-309.
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Data Description

Database of synthetic returns:

Can generate millions of cases easily with the cluster

We’ll use a subset (~76,000 cases) here to evaluate different parameter estimation approaches
note: subset presented here includes oversampling of unusual/outlier spectral shapes (to give better “recall”)

Division of cases:
* Training data (70% of total data, or ~53,000 cases) — parametrically varied inputs; parameter ranges (but NOT distributions) are
matched to that of the population of observed returns

* Validation data (15% of total data, or ~11,000 cases) — randomized uniform distribution within the population of observed returns

*  Testing data (15% of total data, or ~11,000 cases) =~ — randomized uniform distribution the population of observed returns

Retained data: first 129 bins of spectrum:



Results — Individual Network Performance

Hyperparameter sweep

Best, Validation Performance is 0.009629 at epoch 23
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Results — Individual Network Performance

Architecture selection Dataset size selection
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Update: architecture has since been modified to be six layers of perceptrons with 48 nodes each



Results — Ensemble Network Performance

Baseline approach: input raw spectra directly into neural network ensemble

11395/11395 cases: R=0.99786, RMSE=0.1995
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*results show test data only (not training or validation data)



Results — Ensemble Network Performance

Uncertainty threshold approach: input raw spectra directly into neural network ensemble, reject cases where variance of

ensemble estimates 1s large
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The results are good, although we have reduced data availability



Results — Ensemble Network Performance

Baseline approach: input raw spectra directly into neural network ensemble
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Results — Ensemble Network Performance

Uncertainty quantification approach: input raw spectra directly into neural network ensemble, use variance of ensemble
estimates to quantify uncertainty

Error in spectral median Error in spectral standard deviation
115»25/ 11395 cases: R=0.79823, RMSE=0.1715 115,%? /11395 cases: R=0.44784, RMSE=0.0542
. Data
—Fit
0.04 |
0.03 ¢
Aam
|
o
© = 0.02
0.01
. U ' ‘ ' '
4 0.1 0.2 0.3 0.4

UQ results have a LOT of scatter



‘ Conclusions

Machine learning techniques are being applied to solve UQ problems related to wind turbine wake diagnostics

Ensemble neural networks are effective to reduce mean and random errors during post-processing of Doppler lidar
spectra

* Ensemble approach leveraging 64 networks to reduce uncertainty has been developed for lidar post-processing
* Initial results show less than 0.03 m/s (~0.3%) standard etror of the ensemble mean for V04 with marginal
change in data availability

Ongoing work to investigate how to get individual UQ estimates for each input spectrum



Initial ldeas for Improvement of “UQ Approach”

Post-processing:
Use higher-order statistics than just standard error to estimate uncertainty

Network setup:
Training data:
* Generate more training data
* Stop oversampling outliers

Training methodology:

* Use different backpropagation algorithm
* Use different machine learning technique
* Use different ensemble configuration

Network type:

* Use different Bayesian inference or Monte-Carlo dropout

ML type:

* Random forest, auto encoder, others?
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‘ ML processing scheme

Raw spectra
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