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Background

Wind Turbine Wake Diagnostics:

Facility

◦ Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas, USA

◦ Characterization of  the atmospheric conditions in [1], recent benchmarking 
activities given in [2]

Lidar

◦ Continuous-wave DTU SpinnerLidar [3] rear-mounted on WTGa1

◦ Focus = 105 m from WTGa1 along the axis of  the turbine rotor

◦ A rosette pattern is completed in 2 s and consists of  984 measurement locations, some 
below ground

(Images from [9])
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Modern lidars show biases ∼≤ 0.2-m/s and std. dev. ∼≤ 0.20-m/s1 depending mostly on the inhomogeneities in the flow
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Largely unquantified errors stem from contamination by solid interference and amplitude noise

1. Courtney, M., R. Wagner, and P. Lindelöw, Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP Conference Series: Earth and Environmental Science, 2008. 1.

Problem

Problem: how to extract true statistics of  the region of  interest (i.e., spectral median and spectral standard 

deviation) while ignoring contamination from amplitude noise and solid interference?

Solution: train a supervised regressive machine learning model based on a large database of  synthetic spectra to 

discern between true signal and interference for any likely spectral shape



Mean and random errors are substantial

Spectral median Spectral standard deviation

Raw processing: subtract background noise and calculate quantities of  interest (QoIs)

Reference Technique

~11,000 cases

~11,000 cases



~11,000 cases

Significant improvement, but we can still do better…

Spectral median Spectral standard deviation

~11,000 cases

Reference Technique

Quality control processing: subtract background noise, detect and (mostly) filter interference features, and calculate QoIs



Hidden layer architecture

• Six layers of  perceptrons with 48 nodes each

Activation function

• Sigmoid symmetric

Performance function

• MSE

Backpropagation algorithm

• Levenberg-Marquardt

Algorithmic Approach6

Individual neural network architecture:

Number of  ensembles

• 𝑁 = 64 (diminishing returns for 𝑁 >32)

Resampling technique for different ensemble members

• Bootstrapping

Statistics calculated across ensembles for each QoI

• Mean, 𝜇
• Standard error, 𝜎/ 𝑁 − 1

Output QoIs

Ensemble neural network architecture:

Network 1

Network 2

Network 3

Network 4

Network 5

Network 64

etc.

Input spectra

(ML eliminates 

solid interference 

and curve-fits the 

amplitude noise)



Data Description7

Example Spectra (from field test):

Signal of  interest varies widely in shape but falls somewhere along the first 100 bins of  the spectrum



Data Description8

Histograms of  measured spectral parameters:

Data derive from 3.2E8 

spectral returns taken over 

more than 180 hours of  

wake sampling

Measured data used to inform generation of  synthetic database*

*Synthetic data has known ground truth parameters with artificial interference added



Data Description9

Histograms of  measured spectral parameters:

Database of  synthetic returns:

Baseline spectra:

𝑠𝑅𝑂𝐼 =
𝑀0𝑅𝑂𝐼

𝑀2𝑅𝑂𝐼 2𝜋
𝑒
−
1
2

𝑣𝑙𝑜𝑠−𝑀1𝑅𝑂𝐼

𝑀2𝑅𝑂𝐼 1∓𝑀3𝑅𝑂𝐼

2

𝑀0𝑅𝑂𝐼 is a magnitude parameter

𝑀1𝑅𝑂𝐼 is a location parameter

𝑀2𝑅𝑂𝐼 is a width parameter

𝑀3𝑅𝑂𝐼 is a skew parameter whose absolute value is less than 

one, and the ∓ takes the sign opposite of  the numerator of  

the exponent.

where…

(this is a scaled epsilon-

skew-normal distribution1)

1. Mudholkar, G.S. and A.D. Hutson, The epsilon–skew–normal distribution for analyzing near-normal data. Journal of statistical planning and inference, 2000. 83(2): p. 291-309.



Data Description10

Histograms of  measured spectral parameters:

Database of  synthetic returns:

Solid interference:

𝑤𝑠𝑜𝑙𝑖𝑑 is the full-width half-maximum of  the solid-interference spectrum

𝑝𝑠𝑜𝑙𝑖𝑑 is the prominence of  the solid interference 

𝑣𝑠𝑜𝑙𝑖𝑑 is the velocity at 𝑝𝑠𝑜𝑙𝑖𝑑

where…𝑠𝑠𝑜𝑙𝑖𝑑 =
𝑝𝑠𝑜𝑙𝑖𝑑

1 + Τ𝑣𝑙𝑜𝑠 − 𝑣𝑠𝑜𝑙𝑖𝑑 𝑤𝑠𝑜𝑙𝑖𝑑



Data Description11

Histograms of  measured spectral parameters:

Database of  synthetic returns:

Amplitude noise:

𝑠𝑛𝑜𝑖𝑠𝑒 is the noise spectrum, which is generated given a variance within each spectral bin.  The variance is here taken to be 

uniform over the spectrum. Each synthetic spectra includes a different randomized distribution of  Gaussian noise.



Data Description12

Database of  synthetic returns:

Baseline spectra:

Solid interference:

Amplitude noise:

The combined synthetic PSD:

𝑠𝑅𝑂𝐼 =
𝑚0𝑅𝑂𝐼

𝑚2𝑅𝑂𝐼 2𝜋
𝑒
−
1
2

𝑣𝑙𝑜𝑠−𝑚1𝑅𝑂𝐼

𝑚2𝑅𝑂𝐼 1∓𝑚3𝑅𝑂𝐼

2

𝑚0𝑅𝑂𝐼 is a magnitude parameter

𝑚1𝑅𝑂𝐼 is a location parameter

𝑚2𝑅𝑂𝐼 is a width parameter

𝑚3𝑅𝑂𝐼 is a skew parameter whose absolute value is less than 

one, and the ∓ takes the sign opposite of  the numerator of  

the exponent.

where…

1. Mudholkar, G.S. and A.D. Hutson, The epsilon–skew–normal distribution for analyzing near-

normal data. Journal of statistical planning and inference, 2000. 83(2): p. 291-309.

𝑠𝑠𝑜𝑙𝑖𝑑 =
𝑝𝑠𝑜𝑙𝑖𝑑

1 + Τ𝑣𝑙𝑜𝑠 − 𝑣𝑠𝑜𝑙𝑖𝑑 𝑤𝑠𝑜𝑙𝑖𝑑
𝑤𝑠𝑜𝑙𝑖𝑑 is the full-width half-maximum of  the solid-interference spectrum

𝑝𝑠𝑜𝑙𝑖𝑑 is the prominence of  the solid interference 

𝑣𝑠𝑜𝑙𝑖𝑑 is the velocity at 𝑝𝑠𝑜𝑙𝑖𝑑

where…

𝑠𝑛𝑜𝑖𝑠𝑒 is the noise spectrum, which is generated given a variance within each spectral bin.  The variance is here taken to be 

uniform over the spectrum. Each synthetic spectra includes a different randomized distribution of  Gaussian noise.

𝑠 = 𝑠𝑅𝑂𝐼 + 𝑠𝑠𝑜𝑙𝑖𝑑 + 𝑠𝑛𝑜𝑖𝑠𝑒

(this is a scaled epsilon-

skew-normal distribution1)



Data Description13

Database of  synthetic returns:

Can generate millions of  cases easily with the cluster

We’ll use a subset (~76,000 cases) here to evaluate different parameter estimation approaches

note: subset presented here includes oversampling of  unusual/outlier spectral shapes (to give better “recall”)

Division of  cases:

• Training data (70% of  total data, or ~53,000 cases)     – parametrically varied inputs; parameter ranges (but NOT distributions) are 

matched to that of  the population of  observed returns

• Validation data (15% of  total data, or ~11,000 cases)  – randomized uniform distribution within the population of  observed returns

• Testing data (15% of  total data, or ~11,000 cases)       – randomized uniform distribution the population of  observed returns

Retained data: first 129 bins of  spectrum:



Hyperparameter sweep

Results – Individual Network Performance



Architecture selection Dataset size selection

Update: architecture has since been modified to be six layers of  perceptrons with 48 nodes each

Results – Individual Network Performance



~11,000 cases*

Results are good, but there are still a few outliers

Spectral median Spectral standard deviation

~11,000 cases*

Baseline approach: input raw spectra directly into neural network ensemble

*results show test data only (not training or validation data)

Results – Ensemble Network Performance



The results are good, although we have reduced data availability 

Spectral median Spectral standard deviation

Uncertainty threshold approach: input raw spectra directly into neural network ensemble, reject cases where variance of  

ensemble estimates is large

Reject: 
𝜎

𝑁−1
> 0.03 𝑚/𝑠 Reject: 

𝜎

𝑁−1
> 0.01 𝑚/𝑠

Results – Ensemble Network Performance



~11,000 cases

Results are good, but there are still a few outliers

Spectral median Spectral standard deviation

~11,000 cases

Baseline approach: input raw spectra directly into neural network ensemble

Results – Ensemble Network Performance



UQ results have a LOT of  scatter

Error in spectral median Error in spectral standard deviation

Uncertainty quantification approach: input raw spectra directly into neural network ensemble, use variance of  ensemble 

estimates to quantify uncertainty

𝜎

𝑁
−
1

𝜎

𝑁
−
1

Results – Ensemble Network Performance



Machine learning techniques are being applied to solve UQ problems related to wind turbine wake diagnostics

Ensemble neural networks are effective to reduce mean and random errors during post-processing of  Doppler lidar 

spectra 

Conclusions

• Ensemble approach leveraging 64 networks to reduce uncertainty has been developed for lidar post-processing

• Initial results show less than 0.03 m/s (~0.3%) standard error of  the ensemble mean for 𝑣𝑚𝑒𝑑. with marginal 

change in data availability

Ongoing work to investigate how to get individual UQ estimates for each input spectrum



Post-processing:

Use higher-order statistics than just standard error to estimate uncertainty

Network setup:

Training data:

• Generate more training data

• Stop oversampling outliers

Training methodology:

• Use different backpropagation algorithm

• Use different machine learning technique

• Use different ensemble configuration

Network type:

• Use different Bayesian inference or Monte-Carlo dropout

ML type:

• Random forest, auto encoder, others?

Initial Ideas for Improvement of “UQ Approach”



Thank you!
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𝑚0𝑅𝑂𝐼
,𝑚1𝑅𝑂𝐼 ,𝑚2𝑅𝑂𝐼 ,𝑚3𝑅𝑂𝐼

, 𝑝𝑠𝑜𝑙𝑖𝑑
(parameters for visualization 

of corrected spectra)

Figure 2. Schematic of the

uncertainty quantification model.
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