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clemental Incorporation and Isotope
. | Fractionation

Quantifying elemental incorporation and stable isotopic fractionation in calcite can provide

= Sr?* is among the most commonly incorporated ions into calcite (second only to Mg?*)

Sr2+ )
> D, can be used as a marker for geological and biological processes Deos = ( /Ca Calcite
> The presence of Mg has been shown to impact Dy, St (Srz"'/c )
a

Aqueous

valuable information I
i

= Srisotopic fractionation can be a tracer for calcite precipitation and dissolution events
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Precipitation Conditions Impact Calcite

The composition of the initial solution has an impact on the chemical

and physical properties of calcite

. Bracco, J.N., et al. (2012) Crystal Growth & Design
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+ 1| Calcite Crystallization

=Crystallization
- Particle size, morphology, and lattice parameters

=lon Incorporation of Sr¢* and/or Mg?* into calcite

> The role of Mg?* on Sr?* incorporation
> lon specific behavior

=Sr-isotopic fractionation



s | Calcite Precipitation and Crystal Growth

Studies have shown the impact of Sr>* and Mg?* (combined or together), but the collective

impact on the chemical and physical properties requires specific attention.

Experimental test matrix

To better understand the intricate relationships between calcite Sample # S"Tj Mgf/a Qcacie
mol% mol%

precipitation conditions and resulting properties, calcite was 1 0 o 415
analyzed in the presence of both Sr?* and Mg?* to demonstrate 2 01 0 4.15
. 5 5 . . 5 . 3 1 0 4.14
their respective and combined impact on calcite crystallization and 4 5 o »y
composition 5 0o 5 4.14
6 0.1 5 4.14

7 1 5 4.13

= Experimentally: Calcite was prepared directly by the double decomposition reaction example computational calcite structure containing Sr substitutions

of NaHCO, and CaCl, and relatively constant saturation index . Sr % L o% OA h N

> Known amounts of SrCl, and/or MgCl, were added to the solution prior to precipitation.
> Sampled at 1 day, 4 days, 7 days, 10 days, 14 days, and 21 days

= Computationally: Molecular modeling work optimized calcite structures with

known substitutions of Sr and/or Mg and calculated the impact on unit cell
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. ‘ Crystallization
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‘ Crystallization
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s | Crystal Sizes

e e O
0 1.23 57.7

= Crystal sizes were estimated through image analysis

and fit with the LSW Ostwald Ripening Equation? o 22 -
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Morphology - 21 Days
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Phase ldentification

= Non-calcite phases were only identified under short equilibrium

times (e.g. 1 day)

° Analyzed by XRD and SAED. Neither technique showed patterns of vaterite or
aragonite (even on samples with abnormal morphologies) after 4 days

(Mg/Ca)iyitia = 2
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Needle Fiber . crystallization
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Morphology (21 Days)

(Mg/Ca);,ijia = O

11

Needle fiber calcite has been shown to form from inorganic and
biogenic sources with rapid precipitation rates. Mg?* has recently been
shown to play a role in the formation of needle fiber calcite'-2.
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| Morphology (21 Days) ~-TEM/EDS
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3 ‘ Unit Cell Parameters

With increased Sr?*, the unit cell elongates in the ¢
direction primarily. Mg?* decreases the calcite unit cell in
the a direction

2 — 2 : o
17.18 unit cell volume (v) = a“c sin 60

17.16 ®

17.14 {104} face

(viewed side on)
17.12 8
17.1

O
17.08

17.06 o &
17.04
17.02

17
4.95 4.97 4.99 5.01 5.03 5.05

ni
<1
<L
(@)

5um

Hodkin, D. J. et al., (2018) Crystal Growth and Design



14 ‘ Unit Cell Parameters

The unit cell expansion from Sr incorporation can be alleviated to some degree by the presence of Mg, leading

to an increase in D,
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15 ‘ Incorporation of Sr?* and Mg?* into Calcite

Dy, is generally larger than D\, and is dependent upon the [Sr**], and the [Mg**],..

The presence of Mg?* enhances the incorporation of Sr2".
Dy IS relatively stable and unimpacted by Sr?*
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16 ‘ Incorporation of Sr?* and Mg?* into Calcite

D, increases with increasing (Sr/Ca),, ratio and enhanced by Mg**.
D\, decreases with greater (Mg/Ca),,

D, versus particle radius reduces down to a single trend with Mg?* is present or absent
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- | Incorporation of Sr2* and Mg?* into Calcite

D, increases with increasing (Sr/Ca),, ratio and enhanced by Mg**.
D\, decreases with greater (Mg/Ca),,

D, versus particle radius reduces down to a single trend with Mg?* is present or absent
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18 ‘ Incorporation of Sr?* and Mg?* into Calcite

Do Mg?* and Sr?* have ion specific impacts or simply the sum of total exogenous cations?

When Dg, . » Cag,iires @nd particle radius are plotted versus [Sr+Mg]., two trend lines emerge signifying the
impact of this ions are not additive.
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» | Incorporation of Sr2* and Mg?* into Calcite

Do Mg?* and Sr?* have ion specific impacts or simply the sum of total exogenous cations?

When Dg, . » Cag,iires @nd particle radius are plotted versus [Sr+Mg]., two trend lines emerge signifying the
impact of this ions are not additive.
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N ‘ Sr Isotopic Fractionation

Fractionation signature suggests the kinetic Isotope effect is the dominant mechanism.

N87/35Sr (%)

calcite

|a kinetic isotope effect:

Light isotopes exhibit faster reaction rates

=1 i =
Ego=3mV vlhht;"vhnaw = A Mhpeavy /’mllim

is proportional to (Sr/Ca)

b equilibrium isotope effect:

Heavy isotopes are enriched in compounds with "stiffer" bonds

[e.g., higher redox state, lower coordination number)

isotope
exchange

o 1/T2

A87/865r (%o)calcite

Wiederhold, J. (2014). Environ. Sci. & Tech.
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21

Sr Isotopic Fractionation
Can A87/85Sr (%o)

calcite

be estimated from crystal size or D, ?

A87/88Sr (%o) .1t IS dEPENdENnt upon the average particle radius and the D, and could be a potential
indictor to the calcite formation conditions.
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_ ‘ Conclusions and Future Work

Conclusions

= Sr?* and Mg?* inhibit calcite crystal growth, though their adsorption and incorporation mechanisms are different

° Mg?*is a strongly hydrating ion and tends to form surface complexes, which preferentially adsorbs to the acute edges of calcite. In contrast, Sr?*
more readily dehydrates and associates with the obtuse angled sides.
= Sr?*incorporated into calcite increases the unit cell volume by elongation along the c axis. Mg?* decreases the unit cell volume and

may alleviate lattice strain allowing for more Sr?* to be incorporated

= D, increases with increasing Sr?* and in the presence of Mg?*; Dy decreases with increasing Mg?* and relatively small impact from

increasing Sr?*

° The incorporation of Mg and Sr appear to be ion specific and not just the sum of the total ion concentration.

87/86Sr isotopic occurs during calcite precipitation and D, and crystal size can be potential descriptors the extent of the fractionation.

= Ongoing computation modeling efforts to evaluate the impact of Sr and Mg incorporation on the surface defect energy and the

crystal lattice energy
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