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Shuttling ions at high speed and with low motional excitation is essential for realizing fast and
high-fidelity algorithms in many trapped-ion based quantum computing architectures. Achieving
such performance is challenging due to the sensitivity of an ion to electric fields and the unknown
and imperfect environmental and control variables that create them. Here we implement a closed-
loop optimization of the voltage waveforms that control the trajectory and axial frequency of an ion
during transport in order to minimize the final motional excitation. The resulting waveforms realize
fast round-trip transport of a trapped ion across multiple electrodes at speeds of 0.5 electrodes per
microsecond (35 m s™! for a one-way transport of 210 um in 6 us) with a maximum of 0.36 + 0.08
mean quanta gain. This sub-quanta gain is independent of the phase of the secular motion at the
distal location, obviating the need for an electric field impulse or time delay to eliminate the coherent

motion.

I. INTRODUCTION

Trapped ions are a leading technology platform for
quantum computing due to their long coherence times
and high-fidelity quantum operations. While current
trapped-ion based quantum computers and simulators
employ tens of trapped ions [1, 2|, practical quantum
computation may ultimately require upwards of 10°
ions [3]. The earliest proposed architecture for scaling
trapped ion systems relies on ion transport for connect-
ing qubits and is known as the Quantum Charge Coupled
Device (QCCD) architecture [4]. All transport primitives
required for moving ions within the QCCD architecture
(i.e., splitting, shuttling, merging and reordering) have
been demonstrated in small systems [5-12].

A time-budget analysis of experiments on the QCCD
architecture illustrates that ion-shuttling can consume
a significant fraction of the total algorithm operation
time [10, 12, 13], thus highlighting the need for fast trans-
port. Shuttling must also not substantially excite ion
motion, since the motional modes mediate spin—spin in-
teractions for entangling gates and coherent excitation
on the order of single quanta can lead to a loss in fi-
delity [14]. For a many-ion array, these requirements
must be achieved in spite of imperfections in the envi-
ronment and control system.

An important metric for a shuttling-based architecture
is the number of electrode-lengths shuttled per second, as
this represents the time to transport an ion to an inde-
pendent trapping site and is independent of the size of the
ion trap. As a rule of thumb, we use three full electrodes
to represent the distance an ion needs to travel in order
to be confined by a completely different set of electrodes.
Earlier efforts [15, 16] have demonstrated comparable or
faster transport using high speed voltage waveform gen-
erators, albeit at lower electrode per second rates due
to the larger electrode sizes. These approaches require
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precise timing in order to realize shuttling with low exci-
tation, such as synchronizing the transport with the axial
frequency or through the use of a diabatic electric field
impulse at the correct phase of axial motion to remove
the excitation.

Theoretical research in shuttling protocols have used
optimal control theory [5, 17] and invariant-based engi-
neering to realize shortcuts to adiabaticity (STA) [18-21].
Such protocols can in principle yield shuttling solutions
that transport an ion with no motional excitation with
transport times much shorter than a period of the ax-
ial motion. These techniques can be utilized to generate
large coherent states of motion [22] as well as be extended
for multi-ion chains [23], anharmonic traps [24], and time-
dependent axial frequencies [25]. Recently, there has
been some interest in performing open-loop optimization
of voltage waveforms to realize these protocols [26, 27].
While these theoretical results are promising, these pro-
tocols rely upon accurate physical modelling as well as
accurate realization of the controls.

Instead of relying upon the accuracy of our models and
their realization, we perform a closed-loop optimization
where the voltage waveform is optimized against exper-
imental runs. In this manner, a highly accurate model
of the experimental apparatus is unnecessary as it is the
experimental performance of the voltage waveform that
is being optimized. The resulting waveform is able to
account for imperfections that excite ion motion during
transport, such as fabrication and geometry differences
across a device, imperfect simulations, background elec-
tric fields, and disparities in filter components that mod-
ify the temporal properties of the voltage waveforms. The
optimization was applied to the round-trip transport of
a single ion to a separate trapping site and back. The
one way distance of 210 um (3 electrodes) was shuttled
in 6 us (15 periods of oscillation) for an average speed
of 35 m s~!. The technique we describe constitutes a
tool that could be used to tune shuttling protocols for
many ions within a trapping array and is agnostic to
deviations from the model resulting from environmental
effects and variations in the fabrication process. Further-
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more we note that this procedure could be appliciable
to tuning up other experimental quantum technologies,
such as neutral-atom quantum computing [28] and atom
interferometry [29-32].

II. RESULTS
A. Optimization procedure

In the experiment, a “°Ca¥ ion is initially trapped at
location A (see Fig. la) with an axial trap frequency
of wy/2m = 2.5 MHz and radial frequencies wy /27 =
(5.6,6.0) MHz. At this location, the ion is spin-polarized
to the electronic state [0) = [S)/2,—3) and the axial
motion is sideband cooled to the motional ground state
(mean quanta 7 = 0.03). Next, using a transport wave-
form derived from the optimization state, the ion is shut-
tled three electrodes to the distal location B, 210 pum
away, corresponding to a separate and independent trap-
ping site. The ion is held at B for a variable dwell time
of at least 12 us before being returned to A with the
reversed waveform. After the round-trip transport, the
amount of axial excitation is probed through a frequency
scan over the first- and second-order red sidebands on
the [S1/2, —3) > | D52, —2) (|0) «+ [1)) transition. This

J

L(X) = max L(X|h) = max lal
h h B,

where 7, (A,|X, h) is the m-th order red sideband for
hold offset h given the state X. The hyperparameters
Q, are chosen to be the same, oy = g = 2 kHz ' For
an ion in the state |0)(0] ® p(X,h) after transport, the
sideband lineshapes after a probe time t,, are
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Tm(Ap|X, h) = Z Pnn (X, h) |g922 | sin? ( 5 ) )
(2)

where Q. = /4|gnm|? + A2, is the detuned Rabi fre-
quency, A,, is the detuning from the m-th sideband,

and the sideband coupling strengths are g,1 = —ingo/n
and gna = —3n%goy/n(n — 1) (here, go is the coupling
strength to the carrier transition, and 7 is the Lamb-
Dicke parameter). A quadratic penalty for the integral of
the second-order sideband emphasizes the minimization
of the second-order sideband over the first-order side-
band. In figures 1b and 1c, the relation between the
value of the loss function and mean quanta are plotted
for both the case of a thermal and coherent excitation for
the probe times used for a particular experiment. The
resulting measurement of the total loss is passed to a
derivative-free optimizer, which uses the Nelder—-Mead al-
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procedure is illustrated in Fig 1d. The loss function is a
combination of the integrals of these sidebands (Eq. 1),
acting as a pseudo-energy for values up to hundreds of
quanta (Figures 1b and 1c). Similar pseudo-energies have
been used in other shuttling experiments [12, 16], exhibit-
ing a relation to the mean quanta up to tens of quanta.
At faster speeds, where motional excitations may exceed
several hundred quanta, higher order motional sidebands
may be needed to construct a suitable pseudo-energy.
Reference [22] utilized such a method in order to measure
the creation of large coherent states. In our experiments,
we found utilizing the first- and second-order motional
sidebands to be a reasonable tradeoff between number of
measurements and motional quanta.

Given a constant axial frequency during transport, the
final state of motion is a coherent state of motion [33, 34].
Unitary transformations can reduce this quantum control
problem to controlling the classical trajectory [33, 35].
The coherent excitation of the ion at the distal location is
revealed by changing the dwell time of the ion at B, as it
exhibits a periodicity in the final excitation. Therefore,
these measurements are repeated with the same wave-
form, with additional offsets to the hold time at the distal
location inserted. These time offsets are chosen to equally
sample the phase of axial motion at the distal location.
The value of the loss function for the optimization state,
X, is the worst performing of all the hold offsets h,
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gorithm. The optimizer then determines the next state
X, which is then passed to the experiment for voltage
synthesis and test. Fig. 2 illustrates the optimization
procedure.

The initial probe times for the first- and second-order
red sidebands were chosen to be slightly less than the ef-
fective m-times so as to not overdrive the sidebands and
saturate the measurement. After 150 function evalua-
tions of the Nelder—Mead optimizer, the loss function be-
came insensitive to improvement and leveled off (Fig. 3a).
Therefore a second round of the optimization was per-
formed using longer probe times and starting from the
final state of the first stage. The longer probe times ef-
fectively increase the sensitivity of our loss function to
lower mean quanta (see Fig. 1c).

B. Optimization state and waveform generation

For each optimization state X in the experiment, the
shuttling waveform is synthesized just prior to test. The
waveforms are all derived from a base trapping voltage
set which consists of 211 individual trapping solutions
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FIG. 1. Geometry of the system and loss function. (a) An ion is trapped at location A where it is prepared in the axial (&)
ground state of motion and in the electronic state |Sy 2, —%} It is then shuttled to B in 6 us and held there for at least 12 us
before being shuttled back. The drawing shows the rf rails and interior control electrodes (but not the outer control rails).
The relationship of the loss function to the mean quanta for both thermal and coherent motion is shown in (b) and (c¢) using
experimentally relevant probe times. Probe time ¢,, corresponds to the m-th order red sideband; (b) shows the relationship for
(t1,t2) = (3 ps, 10 us) and (c) shows the relationship for (25 us, 45 ps). (d) A cartoon of the experimental transport sequence.
The ion is prepared at A, then shuttled to location B and held there for a variable hold time before returning to A for a probe

on the sidebands and detection.

equally spaced along the 210 ym path from A to B. Each
solution is generated through a constrained optimization
problem to generate the least-norm voltage array with
a fixed 2.5 MHz axial frequency for a 4°Ca*t ion with
a unique well location along the path. These solutions
are derived with respect to a boundary element model
of the device, which yields trapping solutions with axial
frequencies within 10% of the experimentally measured
value. First, a forward transport waveform is constructed
to transport the ion to the distal location at a speed of
35 m s~'. The full waveform in the experiment is the
concatenation of this forward solution followed by a hold
at the distal location for 12 us (plus an additional offset)
and finally the time reversal of the forward waveform to
bring the ion back for measurement.

The optimization state consists of a list of n¢ axial fre-
quency points f = {f;}jc1.n, and ng trajectory control
points b = {b;};ec1.n, to control the axial frequency of
the ion along the path and the harmonic well trajectory.
Each frequency point f; fixes the axial frequency at a spa-
tial position z; = xa+jox, where 0z = (xp—xa)/(ns+1)
so that they are equally spaced between A and B. Be-
tween these points, the axial frequency is linearly in-
terpolated and each trapping solution in the base so-
lution is scaled by a factor to match the desired fre-
quency at that position. We constrain the axial fre-
quencies with an exponential penalty for values outside
the range [1.5, 3.5] MHz; this ensures reasonable voltages

and potential wells throughout the shuttling procedure.
The trajectory s : [0,1] — [0,1] determines the har-
monic well location via Zwen(t) = za + (2 — x4)s(t/ts)
where xa p are the spatial location of A and B and
ty = |z — xa|/v = 6 ps is the transport time for the
desired velocity v = 35 m s~!. It is constrained to be
symmetric (i.e. s(1 —7)=1—s(r), 7 = t/t;) and have
fixed endpoints with zero initial and final velocities. The
trajectory is defined through a Bézier curve, or Bernstein
interpolation,

s(t) = f:sj (J;T)Tj(]. — )N, (3)

Jj=0

The choice of such an interpolation makes it easy to auto-
matically satisfy the trajectory constraints: sog = s; = 0,
sy = sy—1 = 1, and s; + sy—; = 1. The trajectory
control points correspond to the lowest non-zero Bézier
coefficients, b; = s;41, resulting in an N = 2n; + 3 order
polynomial. The STA trajectory designed in Ref. [18] for
a rigid harmonic oscillator corresponds to a single tra-
jectory control point, ny = 1, near the boundary of the
feasible space. To account for non-uniform axial frequen-
cies during transport, we include extra degrees of freedom
and start from an initial point deeper within the feasible
space in order to provide more room for exploration.
The forward waveform is formed by determining the
position of the trajectory at each digital-to-analog con-
verter (DAC) step and determining the voltages from the
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FIG. 2. Optimization procedure. Given an optimization state
X = (f,b), the constraints on the state are first checked and
if satisfied are used to generate the waveform from the base
solution (1). This is achieved by scaling the axial frequency
and modifying the trajectory to realize the forward transport
solution (2). The full waveform consists of the forward solu-
tion followed by a hold and then followed by the time reversal
of the forward waveform to return the ion to position A (3).
The loss function consists of a loop over a set of DAC offset
steps that are inserted into the hold time. The loss is calcu-
lated for each offset by measuring the first- and second-order
red sidebands. The final loss is the worst performing of these
offset losses and is sent to the optimizer which generates the
next trial state.

base solution through linear interpolation. If the voltage
waveform does not exceed the voltage budget of the elec-
tronics, the waveform is applied and the lineshapes of the
first- and second-order red sidebands are measured. Vio-
lation of the voltage budget also leads to an exponential
penalty in the value of the loss function that is sent to
the optimizer.

C. Data

We applied our optimization routine to transport
waveforms parameterized by 1) Bézier trajectories de-
fined by three control points, 2) linear trajectories defined
by six intermediate axial frequencies, and 3) a combina-
tion of the two. The number of trajectory control points
was chosen to provide flexibility while maintaining a rea-
sonable order polynomial (here, ny = 3 corresponds to a
9-order polynomial). Likewise, the number of axial con-
trol points was found to be sufficient for our experimental
velocity; other velocities might require a different num-
ber of axial control points. As seen in Fig. 3a, a strong
periodicity in the integrated sidebands over the various

dwell times was observed at the beginning of the opti-
mization. However, as the optimization proceeded the
performance tended to become uniform across the hold
offsets, indicating insensitivity to the dwell time. Due
to the different probe times, the overall value of the loss
functions between different optimizations and runs are
not directly comparable without relating the loss to the
mean quanta. The initial 7-time for the optimizations
with the Bézier parameters were found to be longer than
a linear trajectory (used in the axial-control-only opti-
mization), indicating an initial lower motional excitation.

The absolute performance of the resulting optimized
waveform was measured using sideband thermometry
[36]. Fig. 3b shows the mean quanta gain versus phase
at the distal location for the axial control and the
trajectory-plus-axial optimization routines, which both
exhibit sub-quanta performance. The final waveform of
the trajectory-only optimization did not yield sub-quanta
performance and could not be probed reliably with side-
band thermometry (a minimum of 1.4 + 0.4 quanta was
observed). This could be due to an insufficient explo-
ration of the parameter space, inability to escape a local
minimum, or an insufficient number of parameters. A
background heating rate of 295 + 24 quanta s~! adds a
negligible amount of heating (approximately 0.01 quanta)
to the ion over the course of the transport.

Since it is possible that the optimization could gener-
ate a non-shuttling waveform to achieve low excitation,
a Ramsey measurement is used to verify that the ion is
transported all the way to the distal location with the
optimized waveform (Fig. 4). Prior to shuttling a 7/2
pulse is applied to the ion on the | S /5, —%) <+ |Ds s, —%)
quadrupole transition. Our typical transport and hold
shuttling procedure is performed, followed by a final 7/2
pulse. Such a Ramsey sequence has been used to show
preservation of coherence over thousands of shuttling op-
erations [37]. In order to use the Ramsey sequence for
transport verification, we illuminate the distal location
with a 397 nm laser resonant with the Sy /5 <+ P/ dipole
transition to destroy the coherence if the ion is success-
fully shuttled to that position. Ramsey phase scans were
performed for the four combinations of shuttling on/off
and probe on/off. We see that only when the probe is on
and the ion is transported that coherence is lost.

To determine whether the high speed electronics are
necessary at this transport velocity, a slower-speed DAC
was emulated by decimating the trial waveform and up-
sampling it through a zero-order hold, resulting in an ef-
fective 300 ns DAC step. The same trajectory-plus-axial
optimization procedure as above was applied, achieving
only minimal improvement over the initial transport. No
waveform was generated with the same number of func-
tion evaluations that could achieve a mean excitation be-
low a single quanta with these artificially slow electron-
ics. A long blue-sideband Rabi measurement was per-
formed after shuttling with these decimated waveforms
and found to be consistent with a highly excited mo-
tional state. Fig. 5 shows this data in comparison to a
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FIG. 3. Experimental results of the optimization procedure. (a) This plot illustrate how the loss function proceeds over function
evaluations for the axial frequency optimization for the first and second stages (blue and orange, respectively). The trajectory
and trajectory-plus-axial optimizations display similar behavior. For each evaluation of the total loss for a given state X, we
plot the loss for each hold offset, the maximum of which is sent to the optimizer. (b) Measurement of the mean quanta via
sideband thermometry at the end of the optimization for both the axial and trajectory-plus-axial optimization as a function
of the phase of the axial motion at the distal location B. Error bars represent the standard error. (c) Representative plots of
the first (left) and second (right) order red sidebands for the initial (blue) and final (orange) optimization states. Error bars
represent the standard deviation. N.b. The scans for the final optimization were performed with much longer probe times than
the initial state.
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illustrate a Ramsey measurement of the ion coherence for four
cases. The baseline case, with neither shuttling nor probe,
is in blue. In orange, the ion is shuttled without a probe
at B, showing that coherence is maintained throughout the
procedure. To show the probe has no effect when the ion is
at A, the ion is held stationary while the probe is turned on
(red). Coherence is only lost (green) when the ion is shuttled
to B and the probe is turned on. Error bars represent the
standard deviation.

similar measurement for the trajectory-plus-axial opti-
mized waveform. Fitting the trajectory-plus-axial Rabi
oscillation data to a displaced thermal state results in a
mean quanta of fon + g, = 0.26, in agreement with the
sideband thermometry measurement (0.31 £ 0.08 quanta
for this particular hold offset). It was difficult at this
sub-quanta level to discern the relative contributions of

the optimized decimated (blue) and non-decimated (orange)
trajectory-plus-axial optimizations. The green curve is a max-
imum likelihood estimation for a displaced thermal state il-
lustrating sub-quanta excitation. For the decimated version
the ion is in a highly excited state after transport and did
not achieve sub-quanta transport. Error bars represent the
standard deviation.

the thermal and coherent excitation from a maximum
likelihood estimate fit to the Rabi data, as this method
is only sensitive to motional state populations and not
coherences between the motional states.



III. DISCUSSION

Another approach that was considered for optimiz-
ing the waveform involved pre-compensating the volt-
age waveform to account for the low-pass filter attached
to the chamber [13]. This approach was investigated in
the context of the optimization procedure through the
insertion of a digital filter prior to analog voltage syn-
thesis. In this approach, the filter coefficients served as
the optimization state. We found an infinite impulse
response (IIR) filter to generally be unstable, while an
inherently stable FIR filter consistently resulted in volt-
age waveforms exceeding the range of the DACs during
an attempted optimization. This approach was there-
fore unsuitable for the optimization loop since most of
the optimization was spent in a region that violated the
voltage budget. Although a more complex constrained
optimization procedure might be suitable for the pre-
compensation approach, the performance of the trajec-
tory and frequency control indicates that such complex-
ity is unnecessary to achieve sub-quanta shuttling.

This closed-loop optimization procedure was used to
generate voltage waveforms that transport an ion across
multiple electrodes to a separate trapping well at a speed
of 0.5 electrodes per microsecond, or 35 m s~'. By tun-
ing three trajectory parameters that define a Bézier curve
and six axial frequencies at discrete points in the ion’s
path, the motional excitation following transport was
limited to 0.36 £ 0.08 mean quanta. The Bézier potential
well trajectory initially performed better than a linear
trajectory, however we suspect that it was close enough
to a local minimum such that the local optimizer was
unable to find a solution which exhibited a mean quanta
gain below one. On the other hand, we observed that ax-
ial frequency control alone was sufficient for sub-quanta
transport.

For our experiments, we were able to utilize a loss-
function based on a pseudo-energy derived from mea-
surements of the first- and second-order red sideband
and a Nelder-Mead optimizer. More complex loss func-
tions and optimizers may be more suitable to increase
the speed and complexity of the shuttling operation. At
higher speeds, we expect larger coherent excitation and
thus higher order motional sidebands need to be probed
in the loss function. While our experiments indicated
that trajectory control alone was insufficient with our
simple protocol, an initially good trajectory (such as one
derived from STA techniques, even imperfectly) could be
essential as the shuttling times reduce to a single period
of motion. Our experiments also revealed that high-speed
electronics are an enabling technology for fast shuttling
with low-excitation, since the optimization procedure on
the emulated slower DAC was unable to make sufficient
progress in developing a suitable voltage waveform.

Generalizing this transport optimization technique to
related QCCD operations has the potential to dramati-
cally improve the performance and robustness of larger
scale trapped ion quantum computers. Some operations

can entirely leverage the work described here, like shut-
tling single ions in a large trap array where local vari-
ations yield different optimal waveforms. Other opera-
tions may require different loss functions or more sophis-
ticated optimization algorithms, like split and join opera-
tions with multiple relevant motional modes and adjacent
ions that must not be excited. In both cases, replacing
human-in-the-loop tuning with closed-loop optimization
will be essential to extending the performance currently
demonstrated in trapped ion quantum computers with
few ions to larger and more complicated systems.

IV. METHODS
A. Experiment

A single “°Cat ion is trapped in the linear section of
a High-Optical-Access surface-electrode radiofrequency
(rf) Paul trap [38]. The ion is trapped approximately
70 pm above the surface of the trap and is tightly con-
fined in the transverse direction by applying a 140 V
amplitude rf signal at 51 MHz to rf rail electrodes. Ax-
ial confinement is provided through voltages applied to
specific interior control electrodes which have a pitch of
70 pm while a 60 ym gap in the substrate provides an
open slot below the ion (see Fig. 1a). Control rails out-
side the rf electrodes provide principal axis rotation in
the transverse plane.

Permanent magnets provide a 9.5 G vertical magnetic
field in order to split the ground-state Zeeman levels
|Sl/2,:t%>. Doppler cooling and state readout are per-
formed with a laser addressing the Sy /o <+ P/ transition
at 397 nm, while internal state manipulation of the ion
is performed with a narrow 729 nm laser addressing the
S1/2 +» D52 transition. Additionally, two repump lasers
at 866 nm (D3/2 g P1/2) and 854 nm (D5/2 g P3/2) are
used. The ion is spin-polarized to the [0) = |S; /2, —1)
state by coherently driving the |S s, +%> < |Ds 9, f%>
transition, followed by a repump pulse to the P/, mani-
fold and spontaneous emission back to the S/, manifold.
Ground state cooling of axial motion is achieved in a
similar fashion, where the coherent drive is tuned to the
motional red-sideband of the [S 2, —%) < | D52, —%)
transition.

After shuttling, the first- and second-order red side-
bands are probed by pulsing the 729 nm laser for a given
probe time ¢; and t5 prior to applying the detection beam
at 397 nm. The lineshape of the m-th order red sideband,
rm (A, X) (Eq. (2)), is defined as the probability of the
ion transitioning to the state |1) = [Ds/2, —3),

rm (A, X) = tr [[1){1] xm (Am, X)]

where ., (A,X) is the density matrix of the qubit—
motion coupled system after transporting and then prob-
ing the m-th order red sideband with a laser detuned by
A,, from the sideband for a duration t,,.



B. Lineshape

To calculate the lineshape, we assume the ion is ini-
tially in the state x(0) = ]0)(0] ® p(X) immediately after
transport and prior to the probe. The system coherently
evolves under the probe according to the Hamiltonian

H = wa'a — Agolo + gmoa™ + g ofa™

where the sidebands are well-resolved and the ion is in the
Lamb—-Dicke regime. Here, a corresponds to the phonon
annihilation operator for the axial mode and o = |0)(1].
The detuning Ag = wr, —wg = A,,, — mwy is the detuning
of the laser from the carrier transition, which is expressed
in the second equality in terms of the detuning from the
m-th order red sideband, A,,. The sideband coupling
strengths are given by g,, = (_;i’!)m
carrier coupling strength.

The excitation operator N = afa+moto is a conserved
quantity for this Hamiltonian, and thus any eigenstate of
N preserves the excitation number. This results in a col-
lection of closed manifolds whose dynamics are indepen-
dent of one another. The dimensionality of each manifold
is either one-dimensional (for eigenvalues n < m) or two-
dimensional (eigenvalues n > m). For the case n < m,
the basis state is |0, n), while for n > m the states |0, n)
and |1,n — m) are coupled.

Each subspace can be diagonalized (for n > m) in
terms of the dressed states,

go, where gg is the

0 ; 0
n,+) = cos — |1,n —m) + e'¥89m gin - |0, n
2 2

. 0
—e 1A89m gin —* |1, 0 — m) + cos ?" |0, n)

|n7 _> = 2

where tan6,, = —2|gnm|/An. Here we define the m-th
order sideband coupling strength for the n-th manifold,

Inm = gmy/n!/(n —m)l. These states are eigenstates of

the Hamiltonian with eigenenergy

s — ’71 [Am + /A2 +4|gnm|2}

The probability for measuring the ion in |1) after probing
the m-th sideband is found by expressing the initial state
in terms of the dressed states, applying the phase accu-
mulated over time ¢,,, projecting onto |1), and taking the
trace. Such a procedure yields Eq. (2),

c- t
rm(Am) = o Sin? 6, sin? (m A2+ 4| gnm 2)

2 _ 4‘gn7n‘2
where sin“ 0,, = A2 g

C. Electronics

The voltages applied to the trap electrodes are derived
from a custom 96 channel high-speed arbitrary waveform

generator. Signals are specified in 30 ns steps and filtered
on the digital side with finite impulse response filters that
result in a normalized pass band frequency of 12 MHz
and a stop band frequency of 15 MHz with greater than
100 dB attenuation.

A DAC for each channel outputs a +2.5 V signal
which is amplified to £10 V by a power amplifier with
low-distortion and high-speed current-feedback. Anti-
alias low-pass filters are used to reject unintended signal
generation in higher-order Nyquist domains and yield a
12 MHz analog bandwidth. These voltages are then de-
livered through sixth-order low-pass filters at the vac-
uum chamber feedthrough with 3 dB cutoff at 1.3 MHz,
in order to reduce heating from electrical noise at the
axial frequency. The timing of the system is governed
by a temperature-compensated voltage-controlled crys-
tal oscillator that is phase-locked to an external 10 MHz
reference clock.

V. DATA AVAILABILITY

The data presented in this manuscript are available
from the corresponding author upon reasonable request.
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