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Abstract. We present a numerical framework for recovering unknown non-autonomous dy-
namical systems with time-dependent inputs. To circumvent the difficulty presented by the non-
autonomous nature of the system, our method transforms the solution state into piecewise integra-
tion of the system over a discrete set of time instances. The time-dependent inputs are then locally
parameterized by using a proper model, for example, polynomial regression, in the pieces determined
by the time instances. This transforms the original system into a piecewise parametric system that
is locally time invariant. We then design a deep neural network structure to learn the local models.
Once the network model is constructed, it can be iteratively used over time to conduct global system
prediction. We provide theoretical analysis of our algorithm and present a number of numerical
examples to demonstrate the effectiveness of the method.
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1. Introduction. There has been growing research interests in designing ma-
chine learning methods to learn unknown physical models from observation data.
The fast development of modern machine learning algorithms and availability of vast
amount of data have further promoted this line of research. A number of numeri-
cal methods have been developed to learn dynamical systems. These include sparse
identification of nonlinear dynamical systems (SINDy) [2], operator inference [16],
model selection approach [13], polynomial expansions [30, 29], equation-free multi-
scale methods [9, 28], Gaussian process regression [23], and deep neural networks
[25, 22, 24, 12, 11, 26]. Most of these methods treat the unknown governing equations
as functions mapping state variables to their time derivatives. Although effective in
many cases, the requirement for time derivatives poses a challenge when these data
are not directly available, as numerical approximation of derivatives can be highly
sensitive to noises.

Learning methods that do not require time derivatives have also been developed,
in conjunction with, for example, dynamic mode decomposition (DMD) [27], Koop-
man operator theory [14, 15], hidden Markov models [6], and more recently, deep
neural network (DNN) [21]. In this paper we build upon the framework for learning
autonomous systems developed in [21]. In the referenced work, flow maps of unknown
autonomous systems are approximated based on the exact time integrators, which is
particularly suitable with residual network (ResNet) ([7]). The approach was recently
extended to learning dynamical systems with uncertain parameters [20], reduced sys-
tems [5], model correction [4], and partial differential equations (PDEs) [31]. These
methods all rely on the time invariant property of autonomous systems and cannot
be applied to non-autonomous systems which have solution states that depend on the
entire history of the system. A few approaches for learning non-autonomous systems
have been developed in the context of system control [18, 3, 19]. These methods how-
ever, require the data in the form of long time trajectories and rely on the linearization
of nonlinear systems.
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In this paper we build upon the work in [21] to develop a numerical framework
for recovering unknown non-autonomous dynamical systems with time-dependent in-
puts. Our framework transforms learning of non-autonomous systems into learning
of locally parameterized systems over a set of discrete time instances. Inside each
of the time intervals defined by the discrete time instances, we seek to locally pa-
rameterize the external time-dependent inputs using a local basis over time. This
transforms the original non-autonomous system into a superposition of piecewise lo-
cal parametric systems over each time intervals. We then design a neural network
structure, which extends the idea of ResNet learning for autonomous systems ([21])
and parametric autonomous systems ([20]), to the local parametric system learning
by using observation data. Once the local network model is successfully trained and
constructed, it can be iteratively used over discrete time instances, much like the way
standard numerical integrators are used, to provide system predictions of different
initial conditions and time-dependent external inputs, provided that the new inputs
can be properly parameterized by the local basis used during system learning. In ad-
dition to the description of the algorithm, we also provide theoretical estimate on the
approximation error bound of the learned model. The proposed method is applicable
to very general non-autonomous systems, as it requires only mild assumptions, such
as Lipschitz continuity, on the original unknown system. A set of numerical exam-
ples, including linear and nonlinear dynamical systems as well as a partial differential
equation (PDE), are provided. The numerical results demonstrate that the proposed
method can be quite flexible and effective. More in-depth examination of the method
shall follow in future studies.

2. Setup and Preliminary. Let us consider a general non-autonomous dynam-
ical system:





d

dt
x(t) = f(x, γ(t)),

x(0) = x0,
(2.1)

where x ∈ Rd are state variables and γ(t) is a known time-dependent input. For
notational convenience, we shall write γ(t) as a scalar function throughout this paper.
The method and analysis discussed in this paper can easily be applied to vector-valued
time-dependent inputs in component-by-component manner.

2.1. Problem Statement. Our goal is to construct a numerical model of the
unknown dynamical system (2.1) using measurement data of the system state. We
assume that observations of the system state are available as a collection of trajectories
of varying length,

X(i) =
{

x
(
t
(i)
k

)
; γ(i)

}
, k = 1, . . . ,K(i), i = 1, . . . , NT , (2.2)

where NT is the number of trajectories, K(i) is the length of the i-th trajectory
measurement, and γ(i) is the corresponding external input process. In practice, γ(i)

may be known either analytically over t or discretely at the time instances {t(i)k }. The
state variable data may contain measurement noises, which are usually modeled as
random variables. Note that each trajectory data may occupy a different span over
the time axis and be originated from different (and unknown) initial conditions.

Given the trajectory data (2.2), our goal is to construct a numerical model to
predict the dynamical behavior of the system (2.1). More specifically, for an arbitrary

2



initial condition x0 and a given external input process γ(t), we seek a numerical model
that provides an accurate prediction x̂ of the true state x such that such that

x̂(ti; x0, γ) ≈ x(ti; x0, γ), i = 1, . . . , N,

where

0 = t0 < · · · < tN = T

is a sequence of time instances with a finite horizon T > 0.

2.2. Learning Autonomous Systems. For autonomous systems, several data
driven learning methods have been developed. Here we briefly review the method
from [21], as it is related to our proposed method for non-autonomous sytem (2.1).

With the absence of γ(t), the system (2.1) becomes autonomous and time variable
can be arbitrarily shifted. It defines a flow map Φ : Rd → Rd such that

x(s1) = Φs1−s2 (x(s2)) , (2.3)

for any s1, s2 ≥ 0. For any δ > 0, we have

x(δ) = x(0) +

∫ δ

0

f(x(s))ds = [Id +ψ(·, δ)] (x(0)), (2.4)

where Id is identity matrix of size d× d, and for any z ∈ Rd,

ψ(·, δ)[z] = ψ(z, δ) =

∫ δ

0

f(Φs(z))ds

is the effective increment along the trajectory from z over the time lag δ. This suggests
that given sufficient data of x(0) and x(δ), one can build an accurate approximation

ψ̂ (z, δ) ≈ ψ (z, δ) . (2.5)

This in turn can be used in (2.4) iteratively to conduct system prediction. Except the
error in constructing the approximation for the effective increment in (2.5), there is
no temporal error explicitly associated with the time step δ when system prediction
is conducted using the learned model ([21]).

2.3. Deep Neural Network. While the approximation (2.5) can be accom-
plished by a variety of approximation methods, e.g., polynomial regression, we focus
on using deep neural network (DNN), as DNN is more effective and flexible for high
dimensional problems. The DNN utilized here takes the form of standard feed-forward
neural network (FNN), which defines nonlinear map between input and output. More
specifically, let N : Rm → Rn be the operator associated with a FNN with L ≥ 1
hidden layers. The relation between its input yin ∈ Rm and output yout ∈ Rn can be
written as

yout = N(yin; Θ) = WL+1 ◦ (σL ◦WL) ◦ · · · ◦ (σ1 ◦W1)(yin), (2.6)

where Wj is weight matrix between the j-th layer and the (j+1)-th layer, σj : R→ R
is activation function, and ◦ stands for composition operator. Following the standard
notation, we have augmented network biases into the weight matrices, and applied
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the activation function in component-wise manner. We shall use Θ to represent all
the parameters associated with the network.

One particular variation of FNN is residual network (ResNet), which was first
proposed in [7] for image analysis and has since seen wide applications in practice.
In ResNet, instead of direct mapping between the input and output as in (2.6), one
maps the residue between the output and input by the FNN. This is achieved by
introducing an identity operator into the network such that

yout = [I + N(·; Θ)](yin) = yin + N(yin; Θ). (2.7)

ResNet is particularly useful for learning unknown dynamical systems ([21]). Upon
comparing (2.4) with (2.7), it is straightforward to see that the FNN operator N
becomes an approximation for the effective increment ψ.

3. Method Description. In this section we present the detail of our method for
deep learning of non-autonomous systems (2.1). The key ingredients of the method
include: (1) parameterizing the external input γ(t) locally (in time); (2) decomposing
the dynamical system into a modified system comprising of a sequence of local systems;
and (3) deep learning of the local systems.

3.1. Local Parameterization. The analytical solution of the unknown system
(2.1) satisfies

x(t) = x0 +

∫ t

0

f(x(s), γ(s))ds.

Our learning method aims at providing accurate approximation to the true solution
at a prescribed set of discrete time instances,

0 = t0 < t1 < · · · < tn < · · · < tN = T, (3.1)

where T > 0. Let

δn = tn+1 − tn, n = 0, . . . , N − 1,

be the time steps, the exact solution satisfies, for n = 0, . . . , N − 1,

x(tn+1) = x(tn) +

∫ tn+1

tn

f(x(s), γ(s))ds

= x(tn) +

∫ δn

0

f(x(tn + τ), γ(tn + τ))dτ.

(3.2)

For each time interval [tn, tn+1], n = 0, . . . , N−1, we first seek a local parameterization
for the external input function γ(t), in the following form,

γ̃n(τ ; Γn) :=

nb∑

j=1

γ̂jnbj(τ) ≈ γ(tn + τ), τ ∈ [0, δn], (3.3)

where {bj(τ), j = 1, . . . , nb} is a set of prescribed analytical basis functions and

Γn = (γ̂1
n, . . . , γ̂

nb
n ) ∈ Rnb (3.4)

are the basis coefficients parameterizing the local input γ(t) in [tn, tn+1].
Here we include three examples of local parameterizations of a given input γ(t).
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Example 1 (interpolating polynomials). In this case the parameters are γ̂jn =
γ(tn+τnj ), where {τnj }nbj=1 ⊆ [0, δn] are interpolating points, e.g. equally spaced points.
The basis functions are the Lagrange basis associated with the points {τnj }nbj=1.

Example 2 (Taylor polynomials). The parameters are γ̂jn = γ(j−1)(tn) and the

basis functions are bj(τ) = τj−1

(j−1)! .

Example 3 (L2 projection into the space of polynomials of degree nb − 1). The
basis functions are the normalized Legendre polynomials defined in the interval [0, δn].

The parameters are the projection coefficients γ̂jn =
∫ δn

0
γ(tn + τ)bj(τ) dτ .

Note that in many practical applications, the external input/control process γ(t)
is already prescribed in a parameterized form. In this case, the local parameteriza-
tion (3.3) becomes exact, i.e., γ(tn + τ) = γ̃n(τ ; Γn, ). In other applications when the
external input γ(t) is only known/measured at certain time instances, a numerical
procedure is required to create the parameterized form (3.3). This can be typically
accomplished via a numerical approximation method, for example, polynomial inter-
polation, least squares regression etc.

3.2. Modified System. With the local parameterization (3.3) constructed for
each time interval [tn, tn+1], we proceed to define a global parameterized input

γ̃(t; Γ) =

N−1∑

n=0

γ̃n(t− tn; Γn)I[tn,tn+1](t), (3.5)

where

Γ = {Γn}N−1
n=0 ∈ RN×nb (3.6)

is global parameter set for γ̃(t), and IA is indicator function satisfying, for a set A,
IA(x) = 1 if x ∈ A and 0 otherwise.

We now define a modified system, corresponding to the true (unknown) system
(2.1), as follows,





d

dt
x̃(t) = f(x̃, γ̃(t; Γ)),

x̃(0) = x0,
(3.7)

where γ̃(t; Γ) is the globally parameterized input defined in (3.5). Note that when
the system input γ(t) is already known or given in a parametric form, i.e. γ̃(t) =
γ(t), the modified system (3.7) is equivalent to the original system (2.1). When
the parameterized process γ̃(t) needs to be numerically constructed, the modified
system (3.7) becomes an approximation to the true system (2.1). The approximation
accuracy obviously depends on the accuracy in γ̃(t) ≈ γ(t). For the modified system,
the following results holds.

Lemma 3.1. Consider system (3.7) over the discrete set of time instances (3.1).

There exists a function φ̃ : Rd × Rnb × R → Rd, which depends on f , such that for
any time interval [tn, tn+1], the solution of (3.7) satisfies

x̃(tn+1) = x̃(tn) + φ̃(x̃(tn),Γn, δn), n = 0, . . . , N − 1, (3.8)

where δn = tn+1 − tn and Γn is the local parameter set (3.4) for the locally parame-
terized input γ̃n(t) (3.3).
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Proof. Let x̃n(t) denote x̃(t) in the time interval [tn, tn+1], i.e.,

x̃(t) =

N−1∑

n=0

x̃n(t)I[tn,tn+1](t).

With the global input γ̃(t) defined in the piecewise manner in (3.5), the system (3.7)
can be written equivalently as, for each interval [tn, tn+1], n = 0, . . . , N − 1,





d

dt
x̃n(t) = f(x̃n, γ̃n(t− tn; Γn)), t ∈ (tn, tn+1],

x̃n(tn) = x̃(tn).

Let Φn : (Rd × R)× R→ Rd be its (time dependent) flow map such that

x̃n(r) = Φn((x̃n(s), s), r − s), tn ≤ s ≤ r ≤ tn+1.

We then have

x̃n(tn + τ) = Φn((x̃(tn), 0), τ), τ ∈ [0, δn], (3.9)

where the initial condition x̃n(tn) = x̃(tn) has been used.
The solution of (3.7) from tn to tn+1 satisfies

x̃(tn+1) = x̃(tn) +

∫ tn+1

tn

f(x̃(t), γ̃(t; Γ))dt

= x̃(tn) +

∫ δn

0

f(x̃n(tn + τ), γ̃n(τ ; Γn))dτ

= x̃(tn) +

∫ δn

0

f(Φn((x̃(tn), 0), τ), γ̃n(τ ; Γn))dτ,

where (3.5) and (3.9) have been applied. Let

φ̃(x̃(tn),Γn, δn) :=

∫ δn

0

f(Φn((x̃(tn), 0), τ), γ̃n(τ ; Γn))dτ

and the proof is complete.

3.3. Learning of Modified Systems. The function φ̃ in (3.8) governs the
evolution of the solution of the modified system (3.7) and is the target function for
our proposed deep learning method. Note that in each time interval [tn, tn+1] over
the prediction time domain (3.1), the solution at tn+1 is determined by its state at
tn, the local parameter set Γn for the local input γ̃n, the step size δn = tn+1 − tn,
and obviously, the form of the original equation f . Our learning algorithm thus seeks
to establish and train a deep neural network with input x̃(tn), Γn, δn and output
x̃(tn+1). The internal feed-forward network connecting the input and output thus
serves as a model of the unknown dynamical system (2.1).

3.3.1. Training Data Set. To construct the training data set, we first re-
organize the original data set (2.2). Let us assume the length of each trajectory
data in (2.2) is at least 2, i.e., K(i) ≥ 2, ∀i. We then re-organize the data into pairs
of two adjacent time instances,

{
x
(
t
(i)
k

)
,x
(
t
(i)
k+1

)
; γ(i)

}
, k = 1, . . . ,K(i) − 1, i = 1, . . . , NT , (3.10)
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where NT is the total number of data trajectories. Note that for each i = 1, . . . , NT ,
its trajectory is driven by a known external input γ(i), as shown in (2.2). We then

seek, for the time interval [t
(i)
k , t

(i)
k+1] with δ

(i)
k = t

(i)
k+1 − t

(i)
k , its local parameterized

form γ̃
(i)
k (τ ; Γ

(i)
k ), where τ ∈ [0, δ

(i)
k ] and Γ

(i)
k is the parameter set for the local param-

eterization of the input, in the form of (3.3). Again, if the external input is already
known in an analytical parametric form, this step is trivial; if not this step usually
requires a standard regression/approximation procedure and is not discussed in detail
here for the brevity of the paper.

For each data pair (3.10), we now have its associated time step δ
(i)
k and local

parameter set Γ
(i)
k for the external input. The total number of such pairings is Ktot =

K(1) + K(2) + · · ·K(NT ) − NT . We then proceed to select J ≤ Ktot number of such
pairings to construct the training data set for the neural network model. Upon re-
ordering using a single index, the training data set takes the following form

S =
{

(x
(j)
k ,x

(j)
k+1); Γ

(j)
k , δ

(j)
k

}
, j = 1, . . . , J, (3.11)

where the superscript j denotes the j-th data entry, which belongs a certain i-th
trajectory in the original data pairings (3.10). The re-ordering can be readily enforced
to be one-on-one, with the trajectory information is implicitly embedded. Note that
one can naturally select all the data pairs in (3.10) into the training data set (3.11),
i.e., J = Ktot. In practice, one may also choose a selective subset of (3.10) to construct
the training set (3.11), i.e.. J < Ktot, depending on the property and quality of the
original data.

3.3.2. Network Structure and Training. With the training data set (3.11)
available, we proceed to define and train our neural network model. The network
model seeks to learn the one-step evolution of the modified system, in the form of
(3.8). Our proposed network model defines a mapping N̂ : Rd+nb+1 → Rd, such that

Xout = N̂(Xin; Θ), Xin ∈ Rd+nb+1, Xout ∈ Rd, (3.12)

where Θ are the network parameters that need to be trained. The network structure
is illustrated in Fig. 3.1. Inside the network, N : Rd+nb+1 → Rd denotes the operator
associated with a feed-forward neural network with (d + nb + 1) input nodes and d

output nodes. The input is multiplied with Î and then re-introduced back before the
final output. The operator Î ∈ Rd×(d+nb+1) is a matrix of size d× (d+ nb + 1). It
takes the form

Î = [Id,0], (3.13)

where Id is identity matrix of size d × d and 0 is a zero matrix of size d × (nb + 1).
Therefore, the network effectively defines a mapping

Xout = N̂(Xin; Θ) = [̂I + N(·; Θ)](Xin). (3.14)

Training of the network is accomplished by using the training data set (3.11). For
each of the j-th data entry, j = 1, . . . , J , we set

X
(j)
in ← [x

(j)
k ; Γ

(j)
k ; δ

(j)
k ] ∈ Rd+nb+1. (3.15)
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Fig. 3.1: Illustration of the proposed neural network.

The network training is then conducted by minimizing the mean squared loss between

the network output X
(j)
out and the data x

(j)
k+1, i.e.,

Θ∗ = argmin
Θ

1

J

J∑

=1

∥∥∥N̂(X
(j)
in ; Θ)− x

(j)
k+1

∥∥∥
2

. (3.16)

3.3.3. Learned Model and System Prediction. Upon satisfactory training
of the network parameter using (3.16), we obtain a trained network model for the
unknown modified system (3.7)

Xout = N̂(Xin; Θ∗) = [̂I + N(·; Θ∗)](Xin), (3.17)

where Î is defined in (3.13) and N is the operator of the FNN, as illustrated in the
previous section and in Fig. 3.1.

For system prediction with a given external input function γ(t), which is usually
not in the training data set, let us consider the time instances (3.1). Let

Xin = [x(tn); Γn; δn]

be a concatenated vector consisting of the state variable at tn, Γn the parameter
vector for the local parameterization of the external input between [tn, tn+1], and
δn = tn+1− tn. Then, the trained model produces a one-step evolution of the solution

x̂(tn+1) = x(tn) + N(x(tn),Γn, δn; Θ∗). (3.18)

Upon applying (3.18) recursively, we obtain a network model for predicting the
system states of the unknown non-autonomous system (2.1). For a given initial con-
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dition x0 and external input γ(t),





x̂(t0) = x0,

x̂(tn+1) = x̂(tn) + N(x̂(tn),Γn, δn; Θ∗),

tn+1 = tn + δn, n = 0, . . . , N − 1,

(3.19)

where Γn are the parameters in the local parameterization of γ(t) in the time interval
[tn, tn+1]. It is obvious that the network predicting model (3.18) is an approximation
to the one-step evolution (3.8) of the modified system (3.7), which in turn is an
approximation of the original unknown dynamical system (2.1). Therefore, (3.19)
generates an approximation to the solution of the unknown system (2.1) at the discrete
time instances {tn} (3.1).

3.4. Theoretical Properties. We now present certain theoretical analysis for
the proposed learning algorithm. The following result provides a bound between the
solution of the modified system (3.7) and the original system (2.1). The difference
between the two systems is due to the use of the parameterized external input γ̃(t)
(3.5) in the modified system (3.7), as opposed to the original external input γ(t) in the
original system (2.1). Again, we emphasize that in many practical situations when
the external input is already known in a parametric form, the modified system (3.7)
is equivalent to the original system (2.1).

Proposition 3.2. Consider the original system (2.1) with input γ(t) and the
modified system (3.7) with input γ̃(t) (3.5), and assume the function f(x, γ) is Lip-
schitz continuous with respect to both x and γ, with Lipschitz constants L1 and L2,
respectively. If the difference in the inputs is bounded by

‖γ(t)− γ̃(t)‖L∞([0,T ]) ≤ η,

where T > 0 is a finite time horizon. Then,

|x(t)− x̃(t)| ≤ L2 η t e
L1t, ∀t ∈ [0, T ].

Proof. For any t ∈ [0, T ],

x(t) = x(0) +

∫ t

0

f(x(s), γ(s)) ds,

x̃(t) = x(0) +

∫ t

0

f(x̃(s), γ̃(s)) ds.

We then have

|x(t)− x̃(t)| ≤
∫ t

0

|f(x(s), γ(s))− f(x̃(s), γ̃(s))| ds

≤
∫ t

0

|f(x(s), γ(s))− f(x(s), γ̃(s))| ds+

∫ t

0

|f(x(s), γ̃(s))− f(x̃(s), γ̃(s))| ds

≤ L2

∫ t

0

|γ(s)− γ̃(s)| ds+ L1

∫ t

0

|x(s)− x̃(s)| ds

≤ L2 η t+ L1

∫ t

0

|x(s)− x̃(s)| ds.
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By using Gronwall’s inequality, we obtain

|x(t)− x̃(t)| ≤ L2 η t e
L1t.

We now recall the celebrated universal approximation property of neural networks.
Proposition 3.3 ([17]). For any function F ∈ C(Rn) and a positive real number

ε > 0, there exists a single-hidden-layer neural network N(· ; Θ) with parameter Θ such
that

max
y∈D
|F (y)−N(y ; Θ)| ≤ ε,

for any compact set D ∈ Rn, if and only if the activation functions are continuous
and are not polynomials.

Relying on this result, we assume the trained neural network model (3.17) has
sufficient accuracy, which is equivalent to assuming accuracy in the trained FNN
operator N of (3.18) to the one-step evolution operator φ̃ in (3.8). More specifically,
let D be the convex hull of the training data set S, defined (3.11). We then assume

∥∥∥N(·; Θ∗)− φ̃(·)
∥∥∥
L∞(D)

< E , (3.20)

where E ≥ 0 is a sufficiently small real number. In practice, this error threshold E
can be estimated by using the value of the loss function on the validation data set.

Proposition 3.4. Consider the modified system (3.8) and the trained network
model (3.19) over the time instances (3.1). and assume the exact evolution operator
(3.8) is Lipschitz continuous with respect to x, with Lipschitz constant Lφ. If the
network training is sufficiently accurate such that (3.20) holds, then

‖x̂(tn)− x̃(tn)‖ ≤
1− Lnφ
1− Lφ

E , n = 0, . . . , N. (3.21)

Proof. Let Φ = Î + φ̃, where Î is defined in (3.13), we can rewrite the one-step
evolution (3.8) as

x̃(tn+1) = [Φ(·,Γn, δn)](x̃(tn)),

Meanwhile, the learned model (3.19) satisfies, by using (3.17),

x̂(tn+1) = [N̂(·,Γn, δn; Θ∗)](x̂(tn)).

Let en = ‖x̂(tn)− x̃(tn)‖, we then have

en =
∥∥∥[N̂(·,Γn−1, δn−1; Θ∗)](x̂(tn−1))− [Φ(·,Γn−1, δn−1)](x̃(tn−1))

∥∥∥

≤
∥∥∥[N̂(·; Θ∗)−Φ(·)](x̂(tn−1),Γn−1, δn−1)

∥∥∥+

‖[Φ(x̂(tn−1),Γn−1, δn−1)]− [Φ(x̃(tn−1),Γn−1, δn−1)]‖
≤ E + Lφ ‖x̂(tn−1)− x̃(tn−1)‖

This gives

en ≤ E + Lφen−1.
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Repeated use of this relation and with e0 = 0 immediately gives the conclusion.
Remark 3.1. We would like to put the following remarks on the assumptions of

the Proposition 3.4. The assumption of Lipschitz continuity on the evolution operator
in (3.8) is equivalent to assuming Lipschitz continuity on the right-hand-side of the
original system (2.1). This is a very mild condition, commonly assumed for the well-
posedness of the original problem (2.1).

Upon combining the results from above and using triangular inequality, we im-
mediately obtain the following.

Theorem 3.5. Under the assumptions of Proposition 3.2 and 3.4, the solution
of the trained network model (3.19) and the true solution of the original system (2.1)
over the time instances satisfies (3.1) satisfy

‖x̂(tn)− x(tn)‖ ≤ L2 η tn e
L1tn +

1− Lnφ
1− Lφ

E , n = 0, . . . , N. (3.22)

Remark 3.2. The first term in the error estimate (3.22) depends on the approx-
imation error of the parameterization and the second term depends on the accuracy
of the NN. Even though the factor before E grows with N if Lφ > 1, for the proposed
method, the time instances, once selected, are kept as constants and so is the number
of them. The error is reduced by increasing the local approximation degree nb and by
improving the accuracy of the NN. The latter can be achieved by tuning the hyperpa-
rameters of the NN, training for more epochs or using larger training data sets etc.
This is different from the traditional numerical ODE solvers, which improve the error
by reducing the time step size or equivalently by increasing N . By reducing the time
step size, the error η will be reduced, however, the factor in front of E will increase.
In the numerical example we observe that the improvement in the first term trades
off with the growth the second term, which result in little improvement in the overall
error.

Remark 3.3. It is worth noting that the DNN structure employed here is to
accomplish the approximation (3.20). Such an approximation can be conducted by any
other proper approximation techniques using, for example, (orthogonal) polynomials,
Gaussian process, radial basis, etc. The target function is the one-step evolution
operator φ̃ in (3.8). Since for many problems of practical interest, φ̃ : Rd+nb+1 → Rd
often resides in high dimensions and is highly nonlinear, DNN represents a more
flexible and practical choice and is the focus of this paper.

4. Numerical Examples. In this section, we present numerical examples to
verify the properties of the proposed methods. Since our purpose is to validate the
proposed deep learning method, we employ synthetic data generated from known dy-
namical systems with known time-dependent inputs. The training data are generated
by solving the known system with high resolution numerical scheme, e.g., 4th-order
Runge Kutta with sufficiently small time steps. Our proposed learning method is then
applied to the training data set. The training is terminated until the validation loss is
reduced to around 10−7. Once the learned model is constructed, we conduct system
prediction using the model with new initial conditions and new external inputs. The
prediction results are then compared with the reference solution obtained by solving
the exact system with the same new inputs. In all the following examples, the inputs
are parameterized locally by interpolating polynomials over equally spaced points.
Other parameterization strategies were also investigated and produced similar results
to those below but we do not include those re sults here for brevity. Futhermore,
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to clearly examine numerical approximation errors, we only present tests involving
noiseless training data.

In all the examples, for the convenience of the data generation, we generate the
data set (2.2) with K(i) ≡ 2, ∀i, i.e., each trajectory only contains two data points.
For each of the i-th entry in the data set, the first data entry is randomly sampled from
a domain Ix using uniform distribution. The second data entry is produced by solving
the underlying reference dynamical system with a time step δ(i) ∈ I∆ = [0.05, 0.15]
and subject to a parameterized external input in the form of (3.3), whose parameters
(3.4) are uniformly sampled from a domain IΓ.

Our approach is not restricted to using trajectories from short time intervals and
can be used with data from a few long-time trajectories. In the latter setting each tra-
jectory can be broken up into short time intervals, however the training data will be
strongly correlated. Consequently, a smart sampling algorithm is required to sample
data pairs along each trajectory such that the sampled data are well separated and
contain sufficient information of the data space. In this paper we focus on establish-
ing a framework for learning non-autonomous systems and will investigate effecting
sampling strategies and other strategies such as efficient learning with corrupted and
noisy data in future work.

The DNNs in all the examples use activation function σ(x) = tanh(x) and are
trained by minimizing the mean squared loss function in (3.16). We tuned the network
configuration until the validation loss is satisfactory (around 10−7). The pursuit of
the optimal configurations of the network is out of the scope of this paper and is not
pursued here. The network training is conducted by using Adam algorithm [10] with
the open-source Tensorflow library [1]. Upon satisfactory training, the learned models
are used to conduct system prediction, in the form of (3.19), with a constant step size
δn = 0.1.

4.1. Linear Scalar Equation with Source. Let us first consider the following
scalar equation

dx

dt
= −α(t)x+ β(t), (4.1)

where the time-dependent inputs α(t) and β(t) are locally parameterized with polyno-
mials of degree 2, resulting the local parameter set (3.4) Γn ∈ Rnb with nb = 3+3 = 6.
We build a neural network model consisting of 3 hidden layers with 80 nodes per layer.
The model is trained with 20, 000 data trajectories randomly sampled, with uniform
distribution, in the state variable domain Ix = [−2, 2] and the local parameter domain
IΓ = [−5, 5]6. After the network model is trained, we use it to conduct system predic-
tion. In Fig. 4.1a, the prediction result with a new initial condition x0 = 2 and new
external inputs α(t) = sin(4t) + 1 and β(t) = cos(t2/1000) is shown, for time up to
T = 100. The reference solution is also shown for comparison. It can be seen that the
network model produces accurate prediction for this relatively long-term integration.

Fig. 4.1b plots error in predictions of (4.1) learnt using different values of δn. As
discussed in Remark 3.2, decreasing the time step size will reduce the approximation
error for the input, but increasing the number of time steps will enlarge the constant
factor in front of the error bound. However, from Fig. 4.1b, we observe that these
impacts are well balanced and the overall error stays around 10−3 for all three choices
of δn. This behavior is different from the traditional numerical ODE solvers, where
smaller time step size produces more accurate results.
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Fig. 4.1: DNN model prediction of (4.1) with external inputs α(t) = sin(4t) + 1 and
β(t) = cos(t2/1000) and an initial condition x0 = 2. (a) Comparison of long-term
neural network model prediction (labelled “NN”) with the reference solution. (b) Plot
for the prediction errors with different δn.

To support the claims made in Remark 3.3. we show how polynomial approxima-
tion can also be used to generate the one-step evolution operator in (3.8). Specifically,
using the same local parameterization used for DNN approximation, which results in
Γn ∈ [−5, 5]6, we build the one-step operator using tensor orthogonal Legendre poly-
nomials in total degree space, which is a standard multi-dimensional approximation
technique. In Fig. 4.2, the prediction results obtained using the polynomial learning
model are shown, for a case with external inputs α(t) = sin(t/10)+1 and β(t) = cos(t).
In Fig. 4.2(a), the prediction result obtained by quadratic polynomial learning model
is shown. We observe good agreement with the reference solution. In Fig. 4.2(b),
the numerical errors at T = 100 are shown for the polynomial learning model with
varying degrees. We observe that the errors decay exponentially fast when the degree
of polynomial is increased. Since the exact one-step evolution operator φ̃ is smooth
for this linear ODE, spectral accuracy of the polynomial approximation is expected
(see [8, Chapter 6]).

4.2. Predator-prey Model with Control. We now consider the following
Lotka-Volterra Predator-Prey model with a time-dependent input u(t):

dx1

dt
= x1 − x1x2 + u(t),

dx2

dt
= −x2 + x1x2.

(4.2)

The local parameterization for the external input is conducted using quadratic
polynomials, resulting in Γn ∈ R3. More specifically, we set IΓ = [0, 5]3 and the state
variable space Ix = [0, 5]2. The DNN learning model consists of 3 hidden layers, each
of which with 80 nodes. The network training is conducted using 20, 000 data trajec-
tories randomly sampled from Ix × IΓ. The trained NN is tested on 100 trajectories
with initial conditions sampled from Ix and external input u(t) = sin(t/3)+cos(t)+2
for time up to T = 100. In Fig. 4.3b, we plot the mean of the errors along the sample
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Fig. 4.2: Polynomial learning model for (4.1) with α(t) = sin(t/10) + 1 and β(t) =
cos(t). (a) Comparison of the model prediction with reference solution. (b) Relative
error in prediction at T = 100 for increasing polynomial degree in the polynomial
learning model. In all models piecewise quadratic polynomials are used for local
parameterization.

trajectories. And in Fig. 4.3a, we include the prediction result along a sample tra-
jectory with the initial condition x(0) = (3, 2). It can be seen that the DNN model
prediction agrees very well with the reference solution. The numerical error fluctuates
at the level of O(10−2), for this relatively long-term prediction.
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(a) Sample prediction of x1.
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Fig. 4.3: DNN learning model for (4.2). (a) Comparison of its prediction result for
x1 with u(t) = sin(t/3) + cos(t) + 2 and x(0) = (3, 2) against the reference solution.
(b) Mean of the error along 100 sample trajectories with initial condition randomly
sampled from Ix. Results for x2 are very similar and not shown.
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4.3. Forced Oscillator. We now consider a forced oscillator

dx1

dt
= x2,

dx2

dt
= −ν(t)x1 − k x2 + f(t),

(4.3)

where the damping term ν(t) and the forcing f(t) are time-dependent processes. Lo-
cal parameterization for the inputs is conducted using quadratic polynomials. More
specifically, the training data are generated randomly by sampling from state vari-
able space Ix = [−3, 3]2 and local parameterization space IΓ = [−3, 3]6. Similar
to other examples, the DNN contains 3 hidden layers with 80 nodes in each hidden
layer. System prediction using the trained network model is shown in Fig. 4.4, for
rather arbitrarily chosen external inputs ν(t) = cos(t) and f(t) = t/50. Once again,
we observe very good agreement with the reference solution for relatively long-term
simulation up to T = 100. Moreover, when t > 70, the value of x1 has been out of the
training domain [−3, 3], whereas the NN model still generates accurate predictions.
This shows some generalization ability of the NN model.
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Fig. 4.4: DNN model prediction of (4.3) with inputs ν(t) = cos(t) and f(t) = t/50.

4.4. PDE: Heat Equation with Source. We now consider a partial differen-
tial equation (PDE). In particular, the following heat equation with a source term,

ut = uxx + q(t, x), x ∈ [0, 1],

u(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0,

(4.4)

where q(t, x) is the source term varying in both space and time. We set the source
term to be

q(t, x) = α(t)e−
(x−µ)2

σ2 ,

where α(t) is its time varying amplitude and parameter µ and σ determine its the
spatial profile.
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The learning of (4.4) is conducted in a discrete space. Specifically, we employ
n = 22 equally distributed grid points in the domain [0, 1],

xj = j/(n− 1), j = 1, . . . , n.

Let

u(t) = [u(t, x2), · · · , u(t, xn−1)]
†
,

we then seek to construct a DNN model to discover the dynamical behavior of the
solution vector u(t). Note that the boundary values u(x1) = u(xn) = 0 are fixed in
the problem setting and to be included in the learning model.

Upon transferring the learning of the PDE (4.4) into learning of a finite dimen-
sional dynamical system of u ∈ Rd, where d = n− 2 = 20, the DNN learning method
discussed in this paper can be readily applied. Training data are synthetic data gen-
erated by solving the system (4.4) numerically. In particular, we employ second-order
central difference scheme using the same grid points {xj}. The trajectory data are gen-
erated by randomly sample u ∈ R20 in a specific domain Iu = [0, 2]20. Quadratic poly-
nomial interpolation is used in local parameterization of the time dependent source
term, resulting in 3-dimensional local representation for the time dependent coeffi-
cient α(t). Random sampling in domain Iα = [−2, 2]3, Iµ = [0, 3], Iσ = [0.05, 0.5] is
then used to generate the synthetic training data set, for the parameters α, µ, and σ,
respectively.

The DNN network model thus consists of a total of 25 inputs. Because of curse-
of-dimensionality, constructing accurate approximation in 25 dimensional space is
computational expensive via traditional methods such as polynomials, radial basis,
etc. For DNN, however, 25 dimension is considered low and accurate network model
can be readily trained. Here we employ a DNN with 3 hidden layers, each of which
with 80 nodes. Upon successful training of the DNN model, we conduct system
prediction for a new source term (not in training data set), where α(t) = t− btc is a
saw-tooth discontinuous function, µ = 1, and σ = 0.5.

The system prediction results are shown in Fig. 4.5, along with the reference
solution solved from the underlying PDE. We observe excellent agreement between
the DNN model prediction to the reference solution. It is worth noting that the DNN
model, once trained, can be readily used to predict system behavior for other time
dependent inputs.

5. Conclusion. In this paper we presented a numerical approach for learning
unknown non-autonomous dynamical systems using observations of system states.
To circumvent the difficulty posed by the non-autonomous nature of the system,
the system states are expressed as piecewise integrations over time. The piecewise
integrals are then transformed into parametric form, upon a local parameterization
procedure of the external time-dependent inputs. We then designed deep neural
network (DNN) structure to model the parametric piecewise integrals. Upon using
sufficient training data to train the DNN model, it can be used recursively over time
to conduct system prediction for other external inputs. Various numerical examples
in the paper suggest the methodology holds promise to more complex applications.
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R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.

tensorflow.org/. Software available from tensorflow.org.
[2] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data

by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.S.A., 113
(2016), pp. 3932–3937.

[3] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Sparse identification of nonlinear dynamics
with control (sindyc), IFAC-PapersOnLine, 49 (2016), pp. 710–715.

[4] Z. Chen and D. Xiu, On generalized residue network for deep learning of unknown dynamical
systems, arXiv preprint arXiv:2002.02528, (2020).

[5] X. Fu, L.-B. Chang, and D. Xiu, Learning reduced systems via deep neural networks with
memory, Journal of Machine Learning for Modeling and Computing, 1 (2020).

[6] N. Galioto and A. A. Gorodetsky, Bayesian system id: optimal management of param-
eter, model, and measurement uncertainty, (2020), https://arxiv.org/abs/2003.02359.
Submitted.

[7] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[8] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent prob-
lems, vol. 21, Cambridge University Press, 2007.

[9] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidid, O. Runborg, C. Theodor-
opoulos, et al., Equation-free, coarse-grained multiscale computation: Enabling mocro-
scopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2003), pp. 715–
762.

[10] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

[11] Z. Long, Y. Lu, and B. Dong, Pde-net 2.0: Learning pdes from data with a numeric-symbolic
hybrid deep network, Journal of Computational Physics, 399 (2019), p. 108925.

[12] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-net: learning PDEs from data, in Proceedings of
the 35th International Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80
of Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, 10–
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