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Abstract—This research presents a supervisory optimal con-
trol framework called Oxtimal for the efficient control of Type 4
wind turbines with power quality and power system balancing
metrics. This framework consists of a reduced order model
(ROM) of wind turbines connected to an electrical microgrid,
a discretization of the resulting constitutive equations using
an orthogonal spline collocation method (OSCM), and an
optimization engine to solve the resulting formulation. Using
this framework, the approach is validated using wind profiles
that result from high fidelity wind simulations.

Index Terms—Microgrid, Wind, Turbine, Control, Optimiza-
tion

I. INTRODUCTION

Currently, there is a global effort to provide a more sus-
tainable and secure green energy solution that helps reduce
carbon-based emissions. In the United States (U.S.), large
increases in renewable energy (RE) resources are planned
to help meet these green energy strategies. The U.S. De-
partment of Energy (DOE) Office of Energy Efficiency and
Renewable Energy’s (EERE) mission is to provide a clean
energy economy (carbon-neutral) by 2050. Many new R&D
goals and objectives have been initiated to realize these new
technologies [1]. To that end, future energy system designs
require greater system flexibility that addresses variability
from a variety of sources which include all types of wind
power systems [2].

Wind energys growth will require the need for advanced
technology and controls to support grid resilience and inte-
gration of wind with other RE technologies [2]. The offshore
wind resources along the U.S. coast lines are significant and
will contribute to a rapidly growing global industry [2]. With
the increase of RE systems, grid balancing requirements
and disturbances will require new controls and operational
techniques, especially when the dynamic stabilizing effect
of conventional or spinning machine generation becomes
reduced [2], [3]. New tools will be needed for the entire RE
plant design and performance characteristics that can address
increased variabilities and uncertainties. Integration of REs
onto the electric power grid (EPG) will need to address
new problems such as onshore load centers that are very
distant from the generation source such as offshore wind
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farms [4]. Variable power flows due to REs increase the need
for reactive power or energy storage system (ESS) capacity.
Wind farm installations and operations will have an impact
on power quality for the EPG that needs to be addressed.

Innovative approaches and advanced solutions for con-
necting large numbers of RE resources will need to maintain
high power quality, minimize the number of power electronic
components, and minimize ESS requirements. Microgrids as
part of a network of power grids is a promising solution
to assemble large numbers of REs on the EPG while main-
taining dynamic stability and performance [5], [6]. This new
technology is less tolerant to voltage quality disturbances [7]
and with the widespread use of power electronic converters
contribute to maintaining good power quality [8]. Numerous
researchers [9], [8], [10], [11], [12], [13], [14], [15] explore
a vast array of approaches to help solve these problems.

The following paper describes a control framework for a
microgrid powered by wind turbines that uses an optimal
control algorithm based on an on-line optimization engine
with a receding horizon control. The meaning and reason
behind each of these characteristics is given below.

This control framework uses the term optimal control
since the control results from the solution of an optimiza-
tion formulation that minimizes certain criteria. Given the
formulation is not convex, the control framework does not
guarantee a global minima, but given sufficient time it
can guarantee a local minima. In practice, this minima is
acceptable for control.

Even though this approach lacks a real-time guarantee,
it may still be used as an on-line control. In an on-line
control, the control framework repeatedly solves the control
problem on a running system over a specified time horizon.
This differs from an off-line control, which solves the control
problem for a system not in operation. Although an on-line
control requires a prediction of the future, as long as the
inputs to the system can be predicted sufficiently well, it
can provide a useful control.

In order to make the process of prediction and control
more robust, this control framework employs a receding-
horizon control, which is also known as a model-predictive
control. In a receding-horizon control, the inputs that charac-

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-10275C



Controller @ Predictive
(on-line) Engine

>
=

DC Bus

Agent Controller

Control (real-time)

ﬁ
i
&Nind Farm Plant with DC Collective and ESS/
Instrumentation
el
(sensors)

Fig. 1. Overall control architecture (wind turbine pictures courtesy of
Sandia SWiFT facility [18])

terize the system are predicted over a specified time horizon
and then a control over this time period is found. This
time period is known as the planning horizon. If the actual
inputs to the system differ too far from this prediction, the
previously solved control is discarded and a new control is
determined. This shorter time window is called the execution
horizon.

Since an on-line control does not provide run-time guar-
antees, this kind of control is generally used for medium
to long-term planning. For short-term control, an on-line
control is typically combined with a real-time control that
moderates rapidly changing dynamics.

The coordination between the different controls can be
accomplished through the use of software agents located
throughout the power system architecture. Software agents
monitor the state of the system through the use of sen-
sors, determine the appropriate course of action, and then
influence the system behavior by advising the different
controllers. The use of software agents for power system
control continues to evolve. Recently, there has been empha-
sis on single agent control strategies coupled with team level
strategies [16]. Wilson et al. describe one such methodology
for combining these controllers [17] and a simplified diagram
of how these components interconnect can be found in
Figure 1. While these interactions are important, this paper
focuses on the longer term plan through the use of the
optimal control used by the on-line control.

The methodology presented in this paper can be compared
to the techniques used by a variety of different teams. Park et
al. studied the use of a model predictive control for shipboard
power management systems [19]. There, the authors use
an integrated perturbation analysis and sequential quadratic
programming (IPA-SQP) solver from Ghaemi, Sun, and
Kolmanovsky [20] to find a control that determines how
power is used within the system. The framework presented
here differs from Park et al. in that their work attempts to find
a real time controller, but sacrifices optimality in the case
where the perturbation in the initial conditions is too large.
The framework under discussion finds an optimal solution,
but provides no real-time guarantees and must be used on-
line. Both methodologies also differ in the reduced-order
model used for their respective analyses.

Abhinav et al. [21] present an optimization strategy for

the frequency synchronization of multiple AC microgrids. In
their approach, they formulate the control as a convex opti-
mization problem, which is solved using the Alternative Di-
rectional Multiple of Multipliers (ADMM). The framework
here differs from their approach in that their work focuses
on synchronization of AC microgrids and this framework
focuses on the overall operation of DC microgrids. Next,
their work uses distributed optimization algorithms whereas
this framework uses a parallel, nonlinear optimization solver.
In addition, while both methodologies use a circuit based
reduced order model, they differ in the actual model used.

The framework described in this document improves upon
the reduced order model, discretization, and optimization
used by Wilson et al. [22], [23], [17], Young, Cook, and
Wilson [24], Weaver et al. [5], and Hassel et al. [25].
In this paper, the reduced order model of the electrical
microgrid is both simplified and generalized by combining
the microgrid components into an alternating sequence of
series and parallel circuit components that represent the
power system. Next, the discretization is improved from a
finite difference method to an orthogonal spline collocation
method. This allows for improved model fidelity and state
control. Finally, this resulting formulation is solved using
faster, more powerful algorithms from a prototype version
of Optizelle [26], which implements an inexact composite-
step SQP method combined with a primal-dual interior point
method. This allows the model fidelity to be improved by
over an order of magnitude. Nevertheless, the formulation
is generic and other nonlinear optimization algorithms and
software can be applied. However, their performance is not
examined here.

This current approach to control was first described in
a paper by Young, Wilson, and Cook [27]. This paper
improves upon and differs from that work in two key
respects. First, it changes the application from a shipboard
power system to a small wind farm collective in an effort
to demonstrate the broadly applicable nature of the reduced-
order model as well as the control framework. Second, it
presents and demonstrates how nonlinear bounds can be
implemented and applied to the state variables within the
control formulation. This last feature is somewhat unusual
for an optimal control due to the difficulty in implementing
such a feature in a more traditional differential equation
solver such as a Runge-Kutta method.

Finally, this work is being presented in conjunction with
a separate paper from Young, Wilson, Weaver, and Robinett
[28] that details a similar approach to the control of a
microgrid supplied by PV arrays. Though related, these two
papers differ in the reduced-order models used and objective
sought by the optimal control formulation.

The paper is divided into six sections. In Section II, the
paper introduces the reduced order model used to represent
the microgrid. In order to discretize these equations, Sec-
tion III describes the orthogonal spline collocation method.
Using the fully discretized dynamics, Section IV formulates
the optimal control. Then, using the completed framework,
Section V describes the application of the optimal control to
a small wind farm collective. Finally, Section VI summarizes
the paper’s findings.



II. REDUCED ORDER MODEL

To model an electrical microgrid, this control framework
represents the microgrid as a circuit using Kirchoff’s circuit
laws. Similar to the work of Wilson et al. [22], [23], [17] and
Young, Cook, and Wilson [24], [27], the model is comprised
of a parallel DC circuit in Figure 2 connected to multiple
wind turbines in Figure 3. In these diagrams, components
outlined in dotted squares are optional. In addition, the wind
turbine circuit is transformed into the dq0 reference frame.

In this reduced order model, power generation is rep-
resented as either a constant current source in a parallel
component or as a wind turbine. As far as storage, it is
represented using the variable v and is present either as
a voltage source in a wind component or as a current
source in a parallel DC component. In the parallel DC
component, the variable P represents a direct power load
that removes a specified amount of power from the system,
which models the load from a given device. In a similar
manner, d represents a kind of dispatchable load. Like P, it
removes power from the system, but the controller is given
the ability to softly meet a load demand, D. This means
that the control may provide more or less power at any
particular instance with the overall goal of providing the
same amount of energy over the entire planning horizon.
In addition, the current source ,y; represents a controllable
power sink used to pull power from a wind turbine or other
component to a specified bus. This is used by the objective
in the optimal control. In the wind turbine component, the
variable A\ denotes the duty cycle in an average-mode model
of the stator power converter connected to the DC bus. Next,
p denotes the number of pole pairs, N the gearbox ratio, w,
the stator or synchronous frequency, w, the rotor frequency,
R, the blade radius, v,, the wind velocity, and C,, the
power coefficient for the turbine. Note, the stator frequency
is controlled and is therefore a variable in this formulation.
In terms of connectivity, the DC parallel component may
accept any number of sources and sinks whereas the wind
component contains a single sink.

Using these components, the state dynamics for the par-
allel DC components are represented as
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In these equations and bounds, square brackets denote el-
ements that may be present or not present depending on
the configuration of the grid. As a note for the DC parallel
component, since the control framework holds v constant,
the capacitor C' becomes vestigial and the resulting formu-
lation becomes a differential algebraic equation (DAE.) As
a result, holding v constant does create some difficulty since
the resulting system may not necessarily be feasible without
enough fidelity in the available controls. Most often, this
can be ensured by requiring that there exist more control
than state variables after discretization modulo bounds on
the control variables.

In summary, the control framework employs a reduced
order model comprised of a parallel DC circuit connected to
multiple wind turbine components. These components are
highly configurable and allow a microgrid that contain a
various assortment of generation, loads, voltages, and storage
devices to be quickly assembled.

III. DISCRETIZATION

In order to satisfy the dynamics described in the previous
section, the control framework uses an Orthogonal Spline
Collocation Method (OSCM.) Properties of this approach are
described by de Boor and Swartz in [29]. In short, an OSCM
represents each unknown function as a Hermite cubic spline
with unknown coefficients. These coefficients become the
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variables in the optimization formulation. The polynomials
that constitute these splines are given by

hoo(t) =(1 4 2t)(1 — t)? (34)
hio(t) =t(1 —t)? (39)
hoy (t) =t*(3 — 2t) (36)
hay (t) =t*(t — 1). 37

Then, the control framework attempts to satisfy the dynamics
at specified points called collocation points. When the collo-
cation points correspond to Gaussian quadrature points, the
OSCM converges to the true solution of the DAE at the rate
O(h*) where h denotes the largest interval in the mesh used
by the Hermite cubic spline.

In order to assemble the system of equations required for
optimization, the control framework employs an assembly
scheme similar to the one used by older versions of Chebfun
[30], [31]. It accomplishes this by creating and utilizing a
combination of evaluation operators, F, and differentiation
operators, D, that map the coefficients of a Hermite cubic
spline to the evaluation of that spline, or its derivative,
at the collocation points defined by the spline’s mesh. In
other words, the domain of these operators is the space
of coefficients of the spline and the codomain is either
the evaluation or derivative at the collocation points. For
example, the differential equation

u =—u (38)

is discretized as

Da = —-FEa (39)

where « represents the coefficients of the spline. Note, this
example does not impose boundary conditions, but these
can be enforced using a similar methodology. As a note,

Wind Turbine Component

while Chebyshev polynomials generally provide a superior
approximation and model fidelity, Hermite cubic splines
possess a number of desirable properties that are utilized
by this control framework.

As shown by Carlson and Fritsch [32], the control frame-
work can bound the values of a Hermite cubic spline over
the entire domain by bounding the coefficients. Succinctly,
the Hermite polynomial

p(t) = alhoo(t) + Oézhlo(t) + asho (t) + Oé4h11(t) 40)

is bounded between [ and u on the interval [0, 1] whenever
the following inequalities are satisfied

3l <3aq1 + as < 3u 41
3l <31 — as < 3u 42)
3l <3a3 4+ ay < 3u 43)
3l <3a3 — ay < 3u. (44)

If an upper or lower bound is undesired, simply remove that
side of the inequality. Note, this approach not only allows the
control variables to be bounded, but the state as well. Further,
these bounds are satisfied over the entire domain and not just
at the collocation or mesh points. This ensures that certain
values, such as the overall power output of a generator or
the capacity of a storage device, are never exceeded.

One additional benefit of using Gaussian quadrature points
as collocation points is that a spline can be quickly in-

tegrated. Specifically, given the mesh Q = (to,...,tnele),
spline s, and collocation points C, then
tnele nele—1
[ st =3 (trr = 0)(s(Carn) + 5(Carra)
to k=0
(45)

In summary, the OSCM provides a tool that allows the
discretization of the reduced order model of the microgrid.



Fig. 4. Sandia Scaled Wind Farm Technology (SWiFT) facility (wind
turbine pictures courtesy of Sandia SWiFT facility [18])

It is numerically stable, sparse, allows both differentiation
and integration of its quantities, and can be bounded over
the entire domain.

IV. OPTIMAL CONTROL FORMULATION

In order to maximize the amount of power delivered by
the wind turbines, this framework focuses on maximizing
the amount of power delivered to a specific DC bus. To
accomplish this, the parallel DC component may specify a

direct current load .
end
max / Tobj dt.
0

In effect, this incentivizes the parallel DC component to
absorb as much power as possible, which is then immediately
removed through the variable %;.

Putting this all together, the optimal control formulation

(46)

becomes
Maximize Power sent to parallel DC components
Subject to  Parallel DC component dynamics

Wind component dynamics.
To solve the above formulation, the control uses a proto-

type version of Optizelle [26], which implements a modified
version of the composite step SQP method developed by
Ridzal and Heinkenschloss [33], [34], [35]. This is combined
with a primal-dual interior point method in a manner similar
to NITRO described by Byrd, Hribar, and Nocedal [36].
The augmented systems that arise from this formulation are
solved using a Q-less QR factorization developed by Davis
[37].

V. COMPUTATIONAL RESULTS

In order to validate the control, a scenario based on the
Sandia Scaled Wind Farm Technology (SWiFT) facility is
considered [18]. A photograph of this facility can be seen
in Figure 4 and a reduced order model of the facility can
be seen in Figure 5. For reference, WTGa2 lies in the wake
of WTGal by five rotor diameters (5D). The components
in this reduced order model correspond to the components
in Figures 2 and 3. Within these components, the following
parameters are used

1) Mass moment of inertia, J - 101 537.5kg m?

2) Damping, B - 100 Nms/rad

3) Pole pairs, p - 2

4) Gearbox ratio, N - 24.12

5) Blade length plus hub radius, R,, - 13.5 m

W | WTGal

DC Bus
/

Pre—/W

™

WTGb1

W | WTGa2

Fig. 5. Reduced order model of the SWiFT facility. P denotes a parallel
DC component and W denotes a wind turbine. Base of the arrow denotes
a source and the point a sink.

6) Rotor resistance, R, - 0.007 645 44 Q

7) Rotor inductance, L, - 0.00706733 H
8) Stator resistance, R, - 0.009 58576 2

9) Stator inductance, L - 0.00025235 H
10) Initial rotor speed, wy, - 1 rad/s

11) DC bus voltage, v - 460 V

12) DC bus resistance, R - 1000 2.

For the wind profile, this scenario uses results from
Nalu-Wind, which is a generalized, unstructured, massively
parallel, incompressible flow solver for wind turbine and
wind farm simulations. Sprague, Anathan, Vijayakumar, and
Robinson [38] provide a more detailed description of their
algorithm, but summarize their approach as one that in-
cludes an acoustically incompressible fluid dynamics model,
two-way-coupled fluid-structure interaction (FSI), hybrid
Reynolds-averaged-Navier-Stokes/LES (RANS/LES) turbu-
lence modeling, turbine-geometry-resolved fluid meshes
with mesh-motion capabilities (e.g., overset meshes), nonlin-
ear structural dynamics models (e.g., large blade deflections),
and one-way coupling to weather-scale forcing via, e.g.,
numerical weather prediction. Hsieh et al. [39] describe an
application of Nalu-Wind to modeling turbines at the SWiFT
facility.

As far as the discretization, the control framework solves
for a control that lasts 600 s using a discretization with 400
elements. This gives a mesh with node boundaries every 1.5
s and results in an optimization formulation that contains
37600 constraints and 44800 variables.

In terms of the results, Figure 6 provides the wind velocity
used during the scenario. In addition, the power coefficient
curve can be seen in Figure 7. The actual achieved power
coefficient is found in Figure 8. Notice that the optimal
control effectively maximizes this value. Next, in Figure 9,
the rotor frequency is seen. Notice that this value goes nearly
to zero at the end of the scenario. This is due to the optimal
control maximizing the amount of power delivered to the DC
bus and having no information beyond the current scenario.
As such, it attempts to transfer as much stored rotational
energy from the turbine at the scenario’s conclusion. This
can be more clearly seen by examining the energy stored
in the turbine in Figure 11. Generally, this can be avoided
by ignoring the last few seconds of the control. Moving on
to the stator, the slip frequency can be seen in Figure 12.
Connecting to the DC bus, the stator duty cycle is found in
Figure 13. In aggregate, the motor efficiency can be seen in
Figure 14. Here, the control operates at near 98% efficiency
for the leading turbines and around 96% efficiency for the
turbine in the wake. Finally, the amount of power transmitted
to the DC bus is found in Figure 15. Note, the voltage on the
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DC bus is held constant and does not fluctuate throughout
this scenario. In short, the control coordinates the DC bus
and wind turbines effectively to maximize the amount of
power delivered.

VI. CONCLUSIONS

The preceding document describes a framework for the
optimal control of an electrical microgrid powered by wind
turbines.

The control framework consists of a reduced-order model
of an electric microgrid comprised of a collection of parallel
DC circuits connected to wind turbines, a discretization
based on an orthogonal spline collocation method, and an
optimization engine used to solve the resulting formulation.

To validate the control framework, it is applied to a small
scale wind farm driven by a high fidelity wind simulation.
The resulting control demonstrates that power to the DC grid
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Fig. 9. Rotor frequency

can be maximized and the wind turbines effectively coordi-
nated where the voltage on the DC bus is held constant.

In the future, this work can be extended to work on
alternative scenarios of interest as well as incorporate AC
modules as part of an AC collective.
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