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Abstract—Increasing power costs for large-scale computing in a post-Moores Law system have forced the high-performance
computing community to explore heterogeneous systems. Neuromorphic architectures, inspired by biological neural systems, have so
far been relegated to auxiliary machine learning applications. Here, we discuss growing research showing the viability of
ultra-low-power neural accelerators as co-processors for classic compute algorithms, such as random walk simulations and graph

analytics.

1 INTRODUCTION

Spiking neuromorphic computers are non-von Neumann com-
puting systems where the architecture is inspired by biological
neural systems. They are attractive as a post-Moore’s law
technology because they can perform certain workloads with
significantly less power than traditional architectures. They
have recently seen a resurgence due to increasing computa-
tional requirements for state-of-the-art deep learning and the
need for lower power processing. Particularly in the case of
large-scale supercomputing systems, power consumption has
and will continue to be a major issue moving forward, as some
proposed exascale systems will consume tens to hundreds of
megawatts of power [8], [19], so the inclusion of low-power
neuromorphic systems is extremely attractive.

Given the incredible amount of industry interest in deep
learning, it is perhaps unsurprising that numerous platforms
have been developed or specialized for neural networks [11],
[14], [16]. However, we concern ourselves specifically with
spiking neuromorphic hardware which implement a more bio-
logically realistic, dynamic neuron model with sparse, low-
precision (spiking) communication [9], [15]. The underlying
substrate varies and may be analog or digital [5], [7], [9], [12],
[20], [21]. Existing large-scale systems, such as IBM TrueNorth,
SpiNNaker, and Intel Loihi can simulate hundreds of thousands
or neurons or more in real-time [3], [5], [12].

Since spiking neuromorphic systems are typically spiking
neural networks implemented in hardware, neural network-
style computations are the workloads that map most naturally
to spiking neuromorphic systems, and the vast majority of
neuromorphic literature has been focused on this use case [21].
However, there is potential to utilize spiking neuromorphic
systems for a variety of non-neural network applications by
utilizing the underlying architectural properties of spiking
neuromorphic systems. Those properties include: massively
parallel computation, collocated processing and memory, sim-
ple processing elements that perform specific computations
(e.g., integrate-and-fire for neurons, plasticity mechanisms for
synapses), very simple communication between components
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(usually in the form of spikes), event-driven computation,
often resulting in low power consumption, stochastically firing
neurons for noise, and inherently scalable architectures.

Because of these architectural properties, there is growing
interest in applying neuromorphic systems to classic computing
challenges, such as matrix operations, random walk simula-
tions, and graph analytics. Here, we discuss several example
non-neural network applications that utilize one or more of
these properties to implement those applications on spiking
neuromorphic systems.

2 EXAMPLE NON-NEURAL NETWORK APPLICATIONS
2.1 Graph Algorithms and Graphical Optimization

The underlying structure of spiking neuromorphic systems are
weighted, directed graphs and this leads to a growing appli-
cation domain: graph algorithms and graphical optimization
problems. There have been several approaches for utilizing
spiking neuromorphic systems on graph problems and each of
the works discussed here takes a radically different approach in
mapping a graph algorithm to a neuromorphic system, where
some are more straightforward than others. Embedding a graph
into a spiking processor could be as simple as directly mapping
each vertex to a neuron, and each edge to a synapse. In the con-
text of graph algorithms, synaptic weights can act as indicator
flags to identify which edges are active in neuron firing. Finally,
the full algorithm implementation may be executed only on the
neuromorphic hardware, or it many require a workflow that
incorporates a traditional processor.

In [3], [18], an algorithm for single source shortest path
finding is given that relies on the event-driven nature of spiking
neuromorphic systems as well as synaptic plasticity to give the
shortest path routes between nodes. In [4], Guerra and Furber
frame vertex coloring as a constraint satisfaction problem (CSP),
and demonstrate a solution using spiking neural networks
on SpiNNaker. In this work, they give a general approach to
mapping CSPs to spiking neural networks, opening up a wider
array of potential applications beyond graph algorithms. In
[2], Corder, et al.,, they demonstrate solving the vertex cover
problem on TrueNorth by framing the problem as an Ising
model. In [6] Hamilton, et al, a fully connected system of
spiking neurons is used to identify communities on a graph
through spiking label propagation. However this is an example
of a workflow that requires heavy use of traditional hardware,
since a full spike raster is generated from a spiking neuron
network, which is then decoded and analyzed on a CPU.
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In [24] graph partitioning (GP) is framed as a Quadratic
Unconstrained Binary Optimization (QUBO) or Ising model
for solving by the D-Wave quantum annealer. This QUBO
approach is not limited to graph algorithms, but opens the door
to solving a spectrum of NP-hard optimization problems. In
the context of GP, the QUBO formulation as a weight matrix
is mapped to neuromorphic hardware (e.g., IBM’s TrueNorth)
where each node is represented by a neuron and each weight
is mapped to a synapse between neurons [13]. Some leakage
is added to each neuron and the integrate-and-fire dynamics
causes search of the input sampling space till convergence.
Feedback from the firing neurons becomes input to related
neurons (based on the QUBO matrix) helping steer the search.

Guerra [4] and Jonke [10] have both previously used the
stochasticity available in a neuromorphic system to solve opti-
mization problems, such as CSP. A more direct algorithmic ap-
proach for solving a GP QUBO was added using a pseudo sim-
ulated annealing metaheuristic. Spontaneous Stochastic Leak
(SSL) neurons and stochastic leak/decay provide a way to
explore the larger sampling space (by adding or removing
nodes). Temperature is represented by the probability of firing
or leak. The temperature starts at a high value (such as 50%)
and is slowly reduced down to a low value (such as 8%).
Limitations of the IBM TrueNorth framework required the cre-
ation of a separate corelet for each temperature. The resulting
converged high energy solutions are good enough to optimal
for 2-partitioning of graphs.

2.2 Solving partial differential equations through neural
algorithms for Markov random walk

Large scientific computing tasks, often based on systems of
partial differential equations (PDEs), have long been one of the
driving applications for large HPC systems. While numerical
solutions of PDEs are a natural fit for conventional von Neu-
mann architectures, neural approaches have often been seen as
non-ideal for the requisite high-precision arithmetic.

Recently, however, spiking neuromorphic approaches have
shown early promise on classic scientific computing applica-
tions. One example is with diffusion [22]. Diffusion is part of
complex computing applications in fields ranging from finance
to molecular dynamics. While typically solved as a PDE, diffu-
sion can also be computed as a system of Markov random walks
(RWs), with the statistics of the walkers statistically approx-
imating the numerical PDE solution. Notably, the approach in
[22] shows that RWSs can be implemented in two fundamentally
different neural representations. Each of these neural RW algo-
rithms offers distinct scaling trade-offs that, depending on the
application, can show complexity advantages when mapped
to spiking neuromorphic hardware. In principle, while [22]
took advantage of the simple arithmetic and inherently parallel
structure of RWs, the benefits of neural hardware for scientific
tasks is likely not limited to stochastic methods. Even complex
PDEs often aggregate over many relatively simple physical
processes acting in parallel. Considering neural hardware as a
uniquely structured incredibly parallel architecture may enable
new perspectives on how to approach these classes of problems.

2.3 Composite Algorithms through Utility and Numerical
Kernels

One challenge facing spiking co-processors is the wildly differ-
ent and disparate data representations. Conversions between
neural representations and non-neural representations is non-
trivial, and post-simulation analysis of spiking patterns can
be as computationally expensive as the original task. Hence,

individual optimized computations are likely insufficient to
justify a future neural-heterogeneous HPC platform on their
own. However, it is possible and advantageous to provide neu-
ral composite algorithms which link spiking neural algorithms
with other spiking neural algorithms. In this way, we can avoid
the costly conversion and host-side readout.

This requires the development of algorithmic neural build-
ing blocks; some useful kernels have been previously discov-
ered. As examples, utility functions such as sorting and finding
the maximum/minimum/median can be efficiently computed
using spike timing [26], and high fan-in neurons allow for
constant-time, subcubic matrix multiplication [17]. Ensuring
compatible neural representations accomplishes seamless tran-
sitions from one component to another, and spiking neural
algorithms (such as those for cross-correlation [23]) may be
designed around various codings and tradeoffs (e.g. unary
versus temporal coding or time versus space requirements).
When combined these networks are capable of computing
comprehensive algorithms rather than only simple tasks.

2.4 Scientific Simulations

Clearly a key use case for neuromorphic systems beyond neu-
ral networks for machine learning is simulation of biological
neural systems for neuroscience purposes [25], [27]. Because
of the parallel discrete event system processing implemented
on most neuromorphic systems, there is potential to use them
for simulating other behaviors as well. A key example in the
literature is given by Araujo, et al.,, in [1], where they show
that SpiNNaker can be used to simulate the aggregate motion
of a flock of birds, implemented using Boids model. Though
there is relatively little work in this space as of yet, we expect
that as more neuromorphic systems become widely available,
there will be more exploration of discrete event simulations on
neuromorphic architectures.

3 DIScuUSSION AND CONCLUSIONS

Unlike quantum computing, which offers potent theoretical
advantages despite its practical challenges, neuromorphic com-
puting has received rather limited attention as a post-Moore’s
Law technology outside of machine learning. Arguably this
oversight is due to the historic connections of neural networks;
for many applications approximate learned solutions are un-
desirable, and the perception that neuromorphic computing is
inherently low-precision or noisy.

However, as the above applications illustrate, there is no
fundamental reason that spiking neuromorphic approaches
cannot be used for conventional computing applications. Neu-
romorphic architectures can be thought of as a specialized
parallel computer, albeit one with rather simple nodes and
a unique connectivity structure that requires new paradigms
in how to think about algorithms. Neural approaches, which
provide opportunities for reduced power usage and effectively
faster solutions, also introduce a unique blend of complexity
trade-offs (i.e., space vs. time vs. power) that correspond to the
better understood compute vs. memory tradeoffs in conven-
tional systems.

Finally, this paper has discussed using neuromorphic hard-
ware for non-machine learning, but it is important to note
that learning - which will likely be a capability of future
neuromorphic hardware [3] - potentially could be used in non-
obvious ways to extend the applications mentioned above. A
key question for future research in this area is how the adaption
processes that are fundamental to biological neurons can be
leveraged to reliably extend our computational capabilities for
numerical tasks.
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