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2 I Python Interfaces to IPOPT

There have been a number of interfaces to IPOPT developed over the years
> Pyipopt: Python interface to IPOPT
> Developed on GitHub: https://github.com/xuy/pyipopt
- Development is active (5 mo.)

> cyipopt: Cython-ized interface to IPOPT
> Available through conda-forge (and pip), provides docker image
- Development is active (days)
> Provides mechanism for including HSL libraries

> ... there are others

These tools are essentially a translation of IPOPT’s C interface into Python


https://github.com/xuy/pyipopt

3 I Python Interface to IPOPT

Problem is presented to the solver through implementation of methods to return problem
statistics, objective, constraint residual, and derivatives

This has potential performance challenges (need to take care to use mechanisms for

efficient evaluation).

cyipopt: Python wrapper for the Ipopt optimization package, written in Cython.

Copyright (C) 2012-2015 Amit Aides
Copyright (C) 2015-2018 Matthias Kimmerer

Author: Matthias Kimmerer <matthias.kuemmerer@bethgelab.org>
(original Author: Amit Aides <amitibo@tx.technion.ac.il>)
URL: https://github.com/matthias-k/cyipopt

License: EPL 1.0

# Test the "ipopt" Python interface on the Hock & Schittkowski test problem
# #71. See: Willi Hock and Klaus Schittkowski. (1981) Test Examples for

# Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical
# Systems Vol. 187, Springer-Verlag.

#

# Based on matlab code by Peter Carbonetto.

from __future__ import print_function, unicode_literals

import numpy as np
import ipopt

class hs@71(object):

def __init__ (self):
pass

def objective(self, x):

#
# The callback for
#
return x[0] * x[3]

def gradient(self, x):

3

# The callback for

#

return np.array([
x[0] *
x[0] *
x[0] *

calculating the objective

* np.sum(x[0:3]) + x[2]

calculating the gradient

x[3]1 + x[3] * np.sum(x[0:3]),
x[31,
x[3] + 1.0,
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What is PyNumero?

PyNumero: A high-level python framework focused on compatibility
with NumPy/SciPy and Pyomo for rapid development of nonlinear
algorithms without large sacrifices on computational performance.

‘ |
’pyoMo B Numpy

Very similar goals to NLPy (provide high-level interface for building NLP algorithms)
* Focused on compatibility with NumPy/SciPy and Pyomo

Dramatically reduce time required to prototype new NLP algorithms and parallel
decomposition while minimizing the performance penalty

s —



What is PyNumero?

PyNumero: A high-level python framework focused on compatibility
with NumPy/SciPy and Pyomo for rapid development of nonlinear
algorithms without large sacrifices on computational performance.

-~

1/‘ PYOMO

Solver Interfaces

—  CPLEX |

Meta-Solvers

Generalized Benders
Progressive Hedging
Linear bilevel
Linear MPEC

Gurobi

Core Optimization
Objects

Xpress

GLPK

CBC

odeling Extensions
Disjunctive programming

« Stochastic programming
« Bilevel programming

« Differential equations
 Equilibrium constraints

Core Modeling
Objects

BARON

OpenOpt

Model
Transformations

—‘ AMPL Solver Library

Ipopt
KNITRO
Bonmin

Couenne
DAKOTA

m PYNumeo gy

from pyomo.contrib.pynumero.sparse import BlockSymMatrix, BlockMatrix

J: nlp.jacobian_c(x)
W = nlp.hessian_lag(x, v)

M = BlockSymMatrix(2)
MO, 0] =W
M[1,0]=J

Np = BlockMatrix(2, 1)
Np[O, 0] = nlp.hessian_lag(x, y, variables_cols=[m.p1, m.p2])
Np[1, O] = nlp.jacobian_c(x, variables=[m.p1, m.p2])

M_array = M.toarray()
Np_array = Np.toarray()

ds = np.linalg.solve(M_array, Np_array)

: - —




Numpy: Numerical Python

Fundamental for scientific computing in Python

- Powerful N-dimensional array objects

= Sophisticated broadcasting functions

= Effective tool for integrating C/C++ and fortran
= Mainly written in C

= Core functionality for parallel packages mpi4py

Suited for many applications
= Linear algebra

Image processing

Signal Processing

and many others ...

... Nonlinear Programming

NumPy Ecosystem

OpenCV  PySAL  numexpr  astropy
PyTables statsmodels Biopython

scikit-image scikit-learn Numba

Scipy Pandas Matplotlib

NumPy

import numpy as np
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import spsolve

row = np.array([0, 3, 1, 2, 0, 2])
col = np.array([0, 3, 1, 2, 2, 0])
data = np.array([4, 5, 7, 9, 3, 3])

A = coo_matrix((data, (row, col)), shape=(4, 4))
b = np.array([1, 2, 3, 4])
X = spsolve(A, b)




PyNumero

« Python C/C++ extension for nonlinear programming

Access to all high-level features of python

Provides first and second derivatives via ASL (Pyomo aware)
Interfaces with Numpy/Scipy for all array-operations
Supports python calls to HSL linear solver (MA27)
Computationally expensive operations performed in C/C++
Distributed with pyomo and conda-forge

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

m = aml.ConcreteModel()
m.x = aml.Var([1, 2, 3], bounds=(0.0, None))

m.phys = aml.Constraint(expr=m.x[3]"*2 + m.x[1] == 25) )
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0) ‘ pYD M D

m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]"m.x[2]**3)

nlp = PyomoNLP(m) @

X = nlp.create_vector_x()
C = nip.evaluate_c(x)
csub = nip.evaluate_c(x, [m.phys])

Jc = nlp.jacobian_c(x)

- NumPy




Pynumero Software / Algorithms

Compiled
C

NLP Your Linear Algebra] Compiled
h . ﬁ
Interfaces Algorithm Interfaces C/Fortran
= PyomoNLP = RGM = COOMatrix
= AsINLP = ALM = CSCMatrix
= GPM = CSRMatrix
= SQP = BlockMatrix
= IP = MA27Solver
= NLP :
= S Sol
Sensitivity cipy (Solvers)

= Numpy




Interior-Point Algorithm

Build problem min f(z)
s.t. c(z) =0
dp <d(z) < dy
T ST <2y

Original NLP
converged?

Barrier NLP
converged?

Reduce Barrier
Parameter

Compute derivatives
and residuals

|

Compute step direction
(Solve KKT system)

'

Perform Line Search
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Structure in Interior-Point Algorithm

Build problem

Original NLP
converged?

Barrier NLP
converged?

v

Compute derivatives
and residuals

|

Compute step direction
(Solve KKT system)
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Perform Line Search
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But it’s Python — What about performance”?

Equality Constrained Problem with 100K variables

ty

minimize / A(Ya1 — Yret)? + B(u — urer)?dt
to

d:L'A70 . 1

dt B Acond

dra; 1 .
A [L1(yai—1 —za:) — V(yai — yai+1)] Vie{l,..,FT -1}
dt Atray

dmgf LA Al [Fz A feed + L1z a,FT—1 — Loz arr — V(ya,rr — ya,r7+1)) Basic SQP
tray
dea; 1 ~10% slower
than IPOPT

= —— [La(ya,i—1 —®a,) — V(ya,i — Ya,it1)] Vie{FT+1,..,NT}
[LozanT — (F' — D)z A NT+1 — VYA NT+1) (3 (YM M\/)

subject to V(ya1 —za0)

dt  Agay
dranr+1 1
dt Areboiler
TAi = X0y, Vie{0,...,NT +1}

V=Li+D

12=011+F
Ly
- D
_ ya(l —z4)
~ za(1—ya)

u

aAB




Motivation

 Why bother when we have IPOPT?
« Standard optimization codes are powerful but complex
= Can be difficult to modify or extend

 Need simpler frameworks to support future research in
nonlinear optimization

= Nonlinear decomposition algorithms

« Embedding in MINLP solvers

= Nonlinear Model Predictive Control NMPC
... examples




lterative Analysis of Optimization Problems

133
maximize Cy dt
to

. . F, Ey
subject to Cy = V. k1 exp ( R, ) Cq

Cp =k exp ( ) — koexp (— RE; ) Cy

C. = ky exp ( )
400 -
300 1 —— — — — — —————— — — — — — ——— ————————— ———
200 ¢ ¢ o o 3 5 o o o o
100 4
——— Pyomo-PyNumero
0 A Speedup Factor: 7.10532016. —— Pyomo-Ipopt

0 20 40 60 80 100
Number of runs




Testing Nonstandard Approaches

Algorithm 1: Method of Multipliers

1 1
0 —+— 1st order

1 Given penalty parameter p > 0, tolerance ¢ > 0, and estimates y >~ 10043 _ 2nd order
2 for £k=0,1,2,... do =
3 update primal variables: g 102 -
k4+1y _ . k ©
4 T =argminL,(z,y
( ) Sx P( ) qu_J 10—4 ]
5 compute primal residual: — B
k41 k+1 © 10°°
6 rPT = (™) E
|-
7 update dual variables: a 1078
8 yk+1 = yk + p-haﬂ_l(Jc(Ek+l)Vizﬁp(Ik+l,yk+1)_1Jc(zk)T)_1c(zk+1) ! | |
o | if [|r*!| < e then 0 20 40 60
10 | Stop |teratI0n




NLP Sensitivity

from pyomao.contrib.pynumero.sparse import BlockSymMatrix, BlockMatrix
from pyomao.contrib.pynumero.interfaces.utils import compute_init_lam

from pyomao.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

mln f (.CC, p) import numpy as np
m = create_model(4.5, 1.0)
s.t. C(CE, p) = O, (y) opt = aml.SolverFactory('ipopt').solve(m)

. . . nlp = PyompNLP(m)
S (p) — [x (p) Y (p) ] § i glc?r.rfdjr’lgginit_lam(nlp, X=X)

J = nip.jacobian_c(x)

ds(po) " _ [ V2,L(s(po)) Je(s(p0))” }_1 [ V2, L(s(po)) } W = nlp.hessian_lag(x, y)
dp Je(s(p0)) 0 Vpe(s(p0))
M = BlockSymMatrix(2)
M[O, O] =W
M[1,0] =J
: 2 2 2 .
min r{ + x5 + x3 Np = BlockMatrix(2, 1)
Np[O, O] = nlp.hessian_lag(x, y, variables_cols=[m.p1, m.p2])
S.t. 633'1 + 333'2 + 25173 — pl =0 Np[1, 0] = nlp.jacobian_c(x, variables=[m.p1, m.p2))
p2x1 +x2 —x3—1=0 M_array = M.toarray()

Np_array = Np.toarray()

ds = np.linalg.solve(M_array, Np_array)




Structure and Decomposition

Optimization with inherent structure is ubiquitous in engineering applications

= Stochastic programming min Z Fi(2)

= Dynamic optimization Ry

= Network optimization problems st. ¢(z)>0,ieP

= PDE optimization Agzi + Biz = 0, (y;)

Decomposition approaches allow for parallelization

= Internal decomposition
Schur-complement decomposition

1€P

Cyclic reduction

= External decomposition
Alternating direction method of multipliers (ADMM)
Progressive Hedging (PH)

Structures in Python to support external and internal
decomposition approaches and allow for parallelization

= BlockMatrix, BlockVector

= mpidpy




Alternating Direction Method of Multipliers

from pyomo.contrib.pynumero.interfaces.nlp_transformations import AdmmNLP
#...
for k in range(max_iter):

Algorithm 2: Alternating Direction Method of Multipliers

# solve blocks independently
for bid, nlp in enumerate(nlps):
xs[bid], ys[bid] = basic_sqgp(nlp, tee=False)

1 Given barrier parameter p > 0, tolerances €, > 0, €, > 0, and estimates 3°, 2°

2 for k=0,1,2,...do . ‘
. . # update coupling variables
3 | update partition variables: z = [None] * len(nlps)
for bid, nlp in enumerate(nlps):

+ | foreach i€ P do Zilbid] = xs[oid][nlp.zid_to_xid]

. T
5 ot = argmin f; (a;) + (Aizi + Biz¥)" oF + 5| Aizi + BizF|? z = np.mean(z, axis=0)
Ti€EX;

6 update coupling variables: f :C?IGZ)F;]UGEG* rle;]i (CrI] tliss
7 2l = arg miﬂﬁp(xkﬂ, ENTY) for bid, nlp in enumerate(nlps):

? rilbid] = xs[bid][nlp.zid_to_xid] - z
8 | compute primal residual: s =z -old_z_estimates
9 rktl = Agktl 4 Bt # update estimates

for bid, nlp in enumerate(nlps):

10 | compute dual residual: Nlp.z_estimates = z

1 ghtl = pATB . (Zk+1 _ zk) nlp.yv'_estimates. = nlp.w_estimates + nip.rho * r{bid]
nlip.init_x = xs[bid]
12 update dual variables: nlp.init_y = ys[bid]
old_z_estimates =z
5 yk+1 — yk +p,7.k+1
14 if ||7‘k+1|| < ¢ and ||sk+1|| < ¢, then # compute infeasibility norms
r_norm = np.linalg.norm(np.concatenate(r))
15 ‘ stop s_norm = np.linalg.norm(s)

if r_norm < rtol and s_norm < stol:
break

[J. S. Rodriguez, B. Nicholson, C. D. Laird, V. M. Zavala, “Benchmarking ADMM in nonconvex NLPs”, Computers & Chemical Engineering, 2018.]




Conclusions

Efficient optimization solvers are typically complex codes
that require significant software expertise to be extended

PyNumero is a flexible framework for prototyping and
developing NLP algorithms in Python

PyNumero is designed to facilitate research of
decomposition algorithms.

PyNumero exploits the Numpy ecosystem and C++ python
extensions to achieve good performance.

PyNumero is distributed with Pyomo and conda-forge.
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27 | Motivation - Improve Performance of Pyomo (Large/Nonlinear)

Pyomo team always looking for opportunities to improve performance
> Pyomo relies on file I/0 for many solver interactions (ASL/nl)
- String manipulation and file I/0 has major performance implications

- Comparisons with JuMP suggest that Pyomo can be orders of magnitude slower on some
problems

> While speed isn’t everything, it is hard to justify a performance gap like that to users

Recent development efforts have improved performance in certain cases
> New expression system provides full support for PyPy
> Pyomo is often 3-4x faster on PyPy than Cpython
> But PyPy is not commonly used, even by Pyomo developers

> Persistent solver interfaces allow for improved performance on repeated solves with similar
models

> More work needed to “automate” updates
> Only implemented for Gurobi / CPLEX currently



28

Motivation - Improved / Rich Solver Interfaces

File 1/0 based interfaces have significant limitations
> Creating strings in Python is very slow
> Very difficult to support callbacks

Many solves with “similar” problems
> Examples: parameter changes, objective changes (e.g., PH), progressive refinement (e.g., cuts, MINLP)
> Pyomo supports persistent interfaces, but only for commercial solvers (CPLEX/Gurobi)
> Not supported for file I/0 based interfaces
- E.g., NL-based interfaces, re-solving a problem after mutating a constant is still expensive
- Users have written “custom” solvers to do some of this

Build a compact representation that is re-used in many models
> |dea: generate and serialize a compact sub-model representation
> Pyomo could support this with a custom writer
> A fast binary representation can really only be generated in a C/C++ layer

Advanced algorithms require rich interactions with the solvers
> Requires “direct” interfaces, but APIs are solver specific
- Benefits may require highly efficient callbacks (e.g., C++ side)
> Access to expressions in C++ allows for efficient model manipulation / interrogation (e.g., derivatives, FBBT)
> But these are more difficult to implement (C++ is harder than Python)



29 I Motivation - Opportunities for Improvements

Expression generation and translation in Python
> Pyomo expressions create many small objects, which is a performance bottleneck

Replace string-based file 1/0 with direct solver interfaces

Efficient modeling constructs and updates
> E.g., tailored expression objects for linear/quadratic expressions

Time to construct model and setup Ipopt
> P-median: N=M=640, P=1

> Cpython 3.6
T eyomo

Build Model 22.7
Setup Ipopt 44.6
TOTAL 67.3

POEK: Python Optimization Expression Kernel
> Experiment to explore opportunities for performance improvement



30 I Motivation - Pyomo expression kernels could be executed in C++

There are several obvious performance wins
> Create fewer Python objects for expressions

> Avoid creating Python expression objects with long lifetimes (which will help with memory)
> Avoid creating canonical expression representations
> Avoid file 1/0 (including expensive string manipulation for floating point numbers)

Many Performant Python frameworks move compute-intensive kernels into C
> Numpy/Pandas

> Tensorflow

POEK expressions could be generated with many Python-C calls
> Idea: overload operators on expressions objects: variables, constants, expressions
> This is the same method used by Pyomo
- Each operator call results in a Python-C call to create a new expression



31 I POEK Overview

Python API

C++ Expression
Trees

C-API C++ Models

Using CFFI

C++ Solver
Interfaces

C++ Autograd




12 I Simple Example

from poek import *

x1
X2

m = model()

m.add(
m.add(

solver
solver.

-(x2-2)**2 )
X1¥*¥2 + x2 - 1 == 0 )

= Solver('ipopt’)
solve(m)

variable('x1', 1lb=-1, ub=1, initialize=0.5)
variable('x2', initialize=1.5)

NOTES:

» POEK expressions are merely pointers to
C++ expression objects

« Same for variables, models and solvers

» Solution values are stored in the variables
after optimization

» Autograd supports derivatives but not
Hessians or Hessian-vector products




33 I P-Median Model: POEK
x = {}

for n in range(N):

for m in range(M):
x[n,m] = variable(lb=0, ub=1, initialize=0)
variable(N, 1b=0, ub=1, initialize=0)

y
d

for n in range(N):
for m in range(M):
d[n,m] = random.uniform(0.0,1.0)

pmedian = model()

# objective
pmedian.add( quicksum(d[n,m]*x[n,m] for n in range(N) for m in range(M)) )

# single_x
for m in range(M):
pmedian.add( quicksum(x[n,m] for n in range(N)) == 1)

# bound_y
for n in range(N):
for m in range(M):
pmedian.add( x[n,m] - y[n] <= 0 )

# num_facilities
pmedian.add( quicksum(y[n] for n in range(N)) == P )



34 I P-Median Model: Pyomo

model = ConcreteModel()

model.N = RangeSet(N)

model.M = RangeSet(M)

model.x = Var(model.N, model.M, bounds=(0,1), initialize=0)
model.y = Var(model.N, bounds=(0,1), initialize=0)

model.d = Param(model.N, model.M,

initialize=lambda n, m, model : random.uniform(1.0,2.0))

def rule(model):
return quicksum(model.d[n,m]*model.x[n,m] for n in model.N for m in model.M)
model.obj = Objective(rule=rule)

def rule(model, m):
return quicksum(model.x[n,m] for n in model.N) == 1.0
model.single x = Constraint(model.M, rule=rule)

def rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0
model.bound_y = Constraint(model.N, model.M, rule=rule)

def rule(model):
return quicksum(model.y[n] for n in model.N) ==
model.num_facilities = Constraint(rule=rule)



35 I VERY Preliminary Performance Results

Time to construct model and setup Ipopt
> P-median: N=M=640, P=1
> Cpython 3.6

| Pyomo| _____ POEK] Speedup

Build Model 22.7 10.3 2.2x
Setup Ipopt 44.6 6.8 6.6X
TOTAL 67.3 17.1 3.9x
Observations

> CFFl interface is fast enough to justify many Python-C calls when constructing expressions
- Eliminating expression translation and file I/0 in NL writer is a big win (NL files)

> Matrix/Vector expressions would make model build faster



3 | Rethinking POEK

Python API

C-API
Using CFFI

POEKILib

C++ Expression
Trees

C++ Models

C++ Solver
Interfaces

C++ Autograd

This should be a
separate COIN-
OR library!
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38 I Discussion

Questions?



