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2 I My research background

Source: https://www.nytimes.com/2020/05/14/opinion/wildfires-
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Here's what can happen when Li-ion batteries fail

https://www.youtube.com/watch?v=ulLzPSN8iasgk (FM Global LFP
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https://www.youtube.com/watch?v=uLzPSN8iasgk

+ I Li-ion battery fire safety in the news
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What is a Li-ion battery?
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Operating principle
o Charge: lithium ions intercalated in anode
> Discharge: lithium migrates to cathode

Common chemistries (important for
thermodynamic)

o Lithium cobalt oxide (LCO)
o Lithium nickel manganese cobalt oxide (NMC)
o Lithium nickel cobalt aluminum oxide (NCA)

o Lithium iron phosphate (LFP)
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https://www.scib.jp/en/product/sip/download/batteryschool/episode1.htm
https://www.scib.jp/en/product/sip/download/batteryschool/episode1.htm
https://www.batteryspace.com/productimages/customize/6332_5.jpg
https://www.batteryspace.com/images/products/detail/2619.png

s I What happens when batteries fail?

Single Cell

How do cells fail? Manufacturing ~0.5-5 Ah
defects, improper cycling, accidents, &

end Of “fe- . Strings and lTarge
] . format cells
Most cells fail quietly ~10-200 Ah
The fa|Iure_ probability |_s_Iow (on the & v Battery Pack 100s. [ S
order of 1 in several million) 1000s cells
. . 10-50 kKWwh
But for a large installation (~1000s of &
_Cel!s),_t_hls probability is not Stationary storage
InS|gn|fICant system 1000s or more
individual cells
MWh+

How do we improve
safety?

Experiments vs simulations

www.nissanusa.com
www.internationalbattery.com
Www.samsung.com
www.saft.com



http://www.nissanusa.com/
http://www.internationalbattery.com/
http://www.samsung.com/

7 I What happens when single cell fails?

https://www.youtube.com/watch?v=k0CL49cpkJ4 (UTFRG 94 Ah)



https://www.youtube.com/watch?v=k0CL49cpkJ4

s I What happens when a single cell fails?
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o I Chemical source terms for thermal runaway

Empirical chemical reactions:
> SEI decomposition (Richard 1999)

(CH,0CO0,Li), - Li,CO5 + gas
> Anode-electrolyte (Shurtz 2018)
2CcLi + C3H,05 — 2C¢ + Li,CO5 + gas
> Cathode-electrolyte (Hatchard 2001)
1
5

COOZ + C3H403 - Co0 + gas

> Short-circuit
CGLI -1 COOZ - C6 + LlCOOz

> In reality these are messy reactions (electrolytes are proprietary mixtures,
gases don’t necessarily combust)
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Chemical source terms

How do we figure out how much heat each reaction
produces/consumes?

In class, you'll use heats of formation to derive the heat
of the reaction.

For more complex systems of reactions, we use
calorimetry

> Accelerating rate calorimetry (ARC)

o Differential scanning calorimetry (DSC)
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https://www.netzsch-thermal-analysis.com/us/products-solutions/adiabatic-reaction-calorimetry/arc-244/
https://www.netzsch-thermal-analysis.com/us/products-solutions/adiabatic-reaction-calorimetry/arc-244/

11

Safety of large scale systems

Cells are stacked together in a variety of
configurations for energy storage systems
(ESS), electric vehicles (EV), and personal
electronics

Energy density is a critical parameter
o Higher energy density (space efficiency)
o Lower energy density (safety)
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https://www.lgessbattery.com/eu/arid/product-info.lg

https://en.wikipedia.org/wiki/Tesla_Model_S#/media/File:Tesla

Motors_Model _S_base.JPG



https://www.lgessbattery.com/eu/grid/product-info.lg
https://en.wikipedia.org/wiki/Tesla_Model_S#/media/File:Tesla_Motors_Model_S_base.JPG
https://en.wikipedia.org/wiki/Tesla_Model_S#/media/File:Tesla_Motors_Model_S_base.JPG

12 I Cascading failure testing
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13 I Cascading failure testing with passive mitigation

LiCoO, 3Ah pouch cells

5 closely packed cells with/without
aluminum or copper spacer plates

o Spacer thicknesses between 1/32” and

1/8” 1@

o State of charge (SOC) between 50% and
100%

Failure initiated by a mechanical nail
penetration in the outer cell (cell 1)

Thermocouples (TC) between cells and
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14 | Cascading failure: propagation speeds

Increasing state of charge (SOC) decreases both space and cell crossing time

Interplay between heat capacity of system and energy release

Adding spacers increases space crossing time, but decreases cell crossing time I
i
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Finite element model for full cells in thermal runaway

Discretization in one direction (x)

Modeled as a quasi 1-D domain
of thin hexahedron elements

Multi-layered system

o Lumped battery material

o Spacers

> End block insulators _
Convective heat transferto ~ 1e"d
surroundings (scaled by surface
area to volume ratio for thin

domain)

Heat conduction with chemical
sources inside battery material

What inputs do you need to
model this system?

‘EIsides
X—>
h
I I
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Battery Spacer

Qend



16 I Finite element model equations

Energy conservation:
aT  1r
pCy P57 =V -(KVT) + g

Mass conservation for speaes . with N, reactions:

d
£ Z(v ~vi))n

Ny
= - Z AHjr;
=1

Energy source:
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> Prediction of peak temperatures and cooling
o Cell crossing speed slightly over-predicted
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18 | Predicted crossing times: 100% SOC, no spacers

Time: 0.10s
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o Experimental cell and space crossing

times are on the same order.

° Cell crossing times are under-predicted
and space crossing times are over-

predicted.
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Large scale testing and simulation

Recall the energy storage rack from earlier...

How would you model this system to predict failure?

|.'“ flgkal
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https://www.youtube.com/watch?v=ulLzPSN8iasgk (FM Global LFP


https://www.youtube.com/watch?v=uLzPSN8iasgk

20 I Large scale testing and simulation

External fire from vented I
/ electrolyte and products Thermal energy
encountering air stored in rack material
(plastic/metal) ‘
Preheating of
upper modules due |
Flow of / to convection
vented F
electrolyte
and
products Conduction
- through the ‘
Heat release from -+~ failed module

thermal runaway
\\ Preheating of

N\ lower module due |
to convection and ‘

radiation
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Heat and mass transfer in an ESS

mvent




Thanks!
Questions?
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More fire videos

https://www.youtube.com/watch?v=NoVUkUC_o7E (UTFRG — door)

Sidewall Interior Backwall Intericr

= —
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S — r J

W TEXAS Fire Research Group

https://www.youtube.com/watch?v=6lJkgvqJIKU (UTFRG single cell)

Fire Research Group

https://www.youtube.com/watch?v=Fc-eJFIT-bo (FM Global sprinkler)



https://www.youtube.com/watch?v=NoVUkUC_o7E
https://www.youtube.com/watch?v=6IJkqvqJIKU
https://www.youtube.com/watch?v=Fc-eJFIT-bo
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