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Infrared Materials with Lattice-Matched Substrates
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Strain-balanced or lattice-matched superlattices
can be grown arbitrarily thick on conventional IlI-V
substrates

Reducing the effective bandgap of the superlattice
comes at the expense of reduced absorption
(wavefunction overlap) shown by color gradient

The ground state absorption coefficient can be
maximized by optimizing the designs for maximum
wavefunction overlap

Design freedom afforded by additional alloy
constituents allows for simultaneous optimization
of band edge alignment and strain profile
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Impact of Adding Ga in InGaAs/InAsSb Superlattices
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In InAs/InAsSb, the lightly tensile InAs layers must be thicker than the more
heavily compressive InNAsSb layers to balance the strain
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Incorporating Ga into InAs yields increasingly more tensile InGaAs, resulting in
a more symmetric strain-balance profile
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Thinner InGaAs layers act to improve coupling between adjacent hole wells,
improving wavefunction overlap
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Absorption Coefficient and Wavefunction Overlap
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Transition strength (S) gives a measure of the strength of the optical transition
independent of the optical joint density of states
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Transition strength can be determined from the measured absorption coefficient
(a) by backing out the density of states ()
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As wavefunction overlap approaches 100%, the absorption coefficient
approaches 4990 cm-! and the transition strength approaches 43.1

THE AIR FORCE RESEARCH LABORATORY




AFRL

General Observations and Optimal Design
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InGaAs/InAsSb Growth Conditions

InGaAs/InAsSb characterization structures are 1 um thick, doped to 5x10'° cm-3 n-type

Narrower photoluminescence full width at half max observed at lower growth temperatures

Minority carrier lifetime ~2-3 ys at 100 K for all InGaAs/InAsSb samples

Minority carrier lifetime ~1 us for 5x10' cm-3 n-type InAs/InAsSb grown under the same
conditions
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InGaAs/InAsSb Optical Constants

Optical constants of 4.0 um thick layer of mid-wave
InGaAs/InAsSb measured by spectroscopic ellipsometry

Ground state transition energy shifts to 177 meV (7 ym
wavelength) at room temperature
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Photoluminescence Intensity

AFRL

Steady-State Photoluminescence

Photoluminescence shifts to lower energies below 100 K in
the InGaAs/InAsSb superlattice, possibly indicating the

presence of localized states
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Photoluminescence Intensity
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Transient Microwave Reflectance

A microwave probe beam is incident on the sample; the reflected

microwave power is a function of the sample conductivity

Samples are excited by a short pulse 1535 nm laser, and the
photogenerated carrier population modifies the sample conductivity

The conductivity and corresponding microwave reflectance decay

with the photogenerated carrier population
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Conclusions

Adding Ga to InGaAs/InAsSb superlattices yields more tensile InGaAs, resulting in a more symmetric
strain-balance profile and better wavefunction overlap and absorption

Molecular beam epitaxy growth conditions identified for smooth, high-quality mid-wave InGaAs/InAsSb
with long minority carrier lifetime and narrow photoluminescence full-width at half max

Si-doped InGaAs/InAsSb exhibits a 5% longer minority carrier lifetime than identically doped

InAs/InAsSb
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