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2 I Motivation: Nonlinear Normal Modes

Nonlinear Normal Modes provide
theoretical foundation for modal analysis
in the presence of nonlinear physics

> Useful framework when linear(ized) modal
analysis no longer valid

Several algorithms in literature to solve
NNMs for mechanical systems

> E£.g. see review by Renson et al. [1]

Remaining challenge is to address issue < —FreduencyEncrey ot
of scalability to large-order systems
arising in computational 10"

mechanics/dynamics

> Seek to utilize iterative solvers within multi-
harmonic balance to speed up and
parallelize inversion of large algebraic 107
systems
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[1] L. Renson, G. Kerschen, and B. Cochelin, "Numerical computation of nonlinear normal modes in mechanical engineering," Journal of Sound and Vibration, vol.
364, pp. 177-206, 2016.




3 I Nonlinear Normal Mode Definition

Many definitions exist for either damped or
undamped systems [1, 2]

Nonlinear Mode

For a conservative (undamped) system, a Shapes
nonlinear normal mode (NNM) is defined as a (Manifolds) [1]
not necessarily synchronous periodic e

response of the undamped nonlinear system

5 9

To

Mx(t) + Kx(t) + f; (X(f)) — Ipre

For an MDOF system, there exists N NNM e
solution branches that are extensions of linear
normal modes at low energy [1]

[1] Kerschen, G., et al., Nonlinear normal modes. Part I. A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 2009.
[2] Haller, G., Ponsioen, S., Nonlinear normal modes and spectral submanifolds: Existence, uniqueness, and use in model reduction. Nonlinear Dynamics, 2016.




s+ I Multi-harmonic Balance for Periodic Orbits

Assume truncated Fourier series for the periodic response and nonlinear
restoring force Np

x(t) = \/—0_ Z [sj; sin(kwt) + c;cos(kwt)]

=1
c! &
f,(x) = \/—ﬂ_ z s‘,c sin(kwt) + ¢, cos(kmt)]
k=

After substitution and Galerkin projection onto orthogonal periodic
functions

r(z,w) = A(w)z+b(z) — by, =0

Unknowns: vector Z (collection of Fourier coefficients) and scalar w (fundamental
frequency)

See references [1] and [2] for details and derivation of MHB for mechanical
systems

[1] T. Detroux, L. Renson, L. Masset, and G. Kerschen, "The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems,“
Computer Methods in Applied Mechanics and Engineering, vol. 296, pp. 18-38, 2015.
[2] M. Krack and J. Gross, Harmonic Balance for Nonlinear Vibration Problems, 1st ed. Springer International Publishing, 2019.



5 ‘ Predictor-Corrector Methods for Tracing Curves

Pseudo-arclength continuation used

to trace periodic solution of MHB .
equations _ \
A(w)z+ b(z) — b, |«— MHB Residual v \
R(y) = vT (y — y(k=1)) «—— Tangent hyperplane )
constraint
y=[zT o]’

Truncating the Taylor series expansion of
above equations results in a system of

equations to iteratively solve for corrections Pseudo-arclength

continuation

r,(y") "w(y{"))“ﬂz“‘)]__ 0
VS v, |law®] ™ R(y™, V)

Requires solution to potentially large-scale, sparse linear system AX = b that scales as

N =2 - (# Harmonics) - (# DOF)

System of equations scales linearly with the assumed number of harmonics
functions in the Fourier basis — issues realized when inverting large matrices
such as those arising in high-fidelity FEA




s | |terative Solver for MHB

Starting with an inexact Newton update [1], find an approximate update &y(") satisfying,

IR(y™) + Ry (y*)ay®@|| < ni [R(y®)]| 0<m <1
(Forcing Term)

Utilize Krylov subspace iterative methods to solve large-scale and sparse
linear system system until inexact Newton condition satisfied

RY (y(k) )ﬂy(k) = _R(y (k))

This work uses the “restarted” Generalized Minimal Residual (GMRES) method [2]
> Nonsymmetric and indefinite matrices

Convergence and computational cost drastically influenced by the choice of the (left)
preconditioner M

[M_lRy(y(k))]Ay(kE -M1 R(Y(RJ)

[1] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, "Inexact newton methods," SIAM Journal on Numerical analysis, vol. 19, no. 2, pp. 400-408, 1982.
[2] Y. Saad and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on scientific
and statistical computing, vol. 7, no. 3, pp. 856-869, 1986.



lterative Solver for Sparse Large-Scale Systems

Ingredients for a good preconditioner M

i verea of (k)Y ¢ .
Close to the inverse of Ry(y ) for reduced spectral [

condition number

° Inexpensive to perform inverse several times

Known properties of the large matrix Ry(y(k))
° Nonsymmetric

> Block-bordered matrix

° Dominated by rz(y“‘)) which is sparse, symmetric

(for most nonlinearities) and has a block diagonal
form for the linear portion

K- (w)*M 0

A@) = 0 K- (0)*M

K— (Nyw)*M 0

Ry (y*)ay®= .R(y®)

—

0 K- (Nyw)*M,

db
A(a))'l'a
v;
gby Obey,
w_| T
9z | g, db.y,
B..'r,:ml azmh




8 I Preconditioner for GMRES

Proposed preconditioner for MHB for undamped NNM computations:

db 5
M= |A@) + r,(y®)| _ [f(v") ru(y™)
T
v, Vio V2 Vo
where
K 9bo 0 0
+azo
ab
()2 9051
Fz(y[:k)) _ 0 K (ﬂ.}) M + 6251
0
ach
_ 2 h
0 0 K- (Nyw) M+azm_

_— : . db - - :
Eliminates off-diagonal terms in 3, © allow for preconditioner to have block-diagonal and
block-bordered form

> Size still dominated by the upper left quadrant

> Eliminates coupling between nonlinear force and response harmonics



9 ‘ Preconditioner for GMRES

Inverse of block-bordered preconditioner becomes

. 1 a1 .- 1y Te =1 o — _
_ ’I‘z Tw] ~ _ [rz YR T Ir, BWVIE,T T r,p 1]
—BVE, p~!

-1 _ Tz -1
B —Vm_vzrz LA

The computational intensive portions of this equation

are . _1
®r, I,

e ©, 'b; when computing linear system of [2] =M1 [Ell
form 2
Now the inversion of the block-diagonal matrix T, can be computed by inverting 2 - (#
Harmonics) linear systems of order (# DOF)!
> Compared to a single inversion of a 2 - (# Harmonics) * (# DOF) system

“Embarrassingly Parallel” Inversion of



10

Numerical Examples using Full-FEMs

Cantilever beam with cubic spring o

o Verification of algorithm with traditional direct
solver and Newton iterations

Nonlinear C-Beam FEM
> Evaluation of cost savings and performance

Nonlinear pylon FEM

> Demonstration of scalability on large-scale
model




11 1 Nonlinear Cantilever Beam Example

Finite element model created in MATLAB
> 57 DOF (19 elements)
° Cubic spring at tip
° Structural steel properties
> Assumed 5 harmonics in solution kw with k = [1,3,5,7, 9]

AN
\\

0.7m




12 I NNM 1 of Nonlinear Cantilever Beam

Frequency-energy plots from both solvers 19
agree well

> Verifies preconditioned GMRES

o Nln narfarmanrcra Anaine nhtainad (Ar avnartad)

Frequency-Energy Plot

10" 3 ' ' 3
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A0 51 52 533 54 55
10 E
— :
= Leacitional Newtoo | Preconditioned GMRES generally
1 = = = Precondinioned GMRES 3 . . T
k= requires more corrections per solution
- due to forcine term = 0.2
10 & Mie

Number of corrections performed for
the calculation of 200 points on the
NNM 1 branch
10°° ! ! ! ! ! ! ! o Traditional Newton — 579 corrections
20 25 a0 35 4401 45 5] 55
Frequency, Hz

* Preconditioned GMRES —=926 corrections



13 1 C-Beam Example

Full-order finite element model
exported to MATLAB

> 100K DOF (~25K elements)

o Triaxial penalty springs (stick and gap
behavior but no slip)

> Preloaded vja point loads

|

4.8K Ibf (21.4 kN)

nralnan

Displacement Magnitude, m

v 1.500e-05
$ 1.125e-05
7.500e-06
., 3.750e-06
0.000&+00

Contact surface
(node-to-node)

S -:-___:- ﬁ* nut)

MPCs
./ (bolt head and

Beam
elements

)



14 1 Computational Costs with NNM 2 of C-Beam

Table shows comparison of computational cost of single inversion for
o Preconditioner within GMRES iterative solves
o Full Jacobian matrix in traditional Newton with serial direct solves

Preconditioned GMRES cost dominated by size of FEM - (# DOF) — and
does not grow with additional harmonics (assuming processors available for
computations)

> Typically GMRES requires more iterations and matrix inversions (per iteration)
compared to traditional Newton scheme

O O O
1*

Preconditioned 151s 16.0 s 16.4 s 15.7 s
GMRES**

Direct solve Newton 163 s 391 s 1020 s 1290 s

*Must include DC term to account for static preload

**MATLAB implementation uses 2 - (# Harmonics)+1 workers in parallel computations
when inverting preconditioner (i.e. each subblock inverted using parfor loops)
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Energy, J

C-Beam Example E
NNM 2 initiated from linearized out-of-phase first bending
mode (274.6 Hz)
Additional harmonics (2w and 3w) have significant
influence on backbone Mode 2 — out-of-phase
endin
Preconditioned GMRES shown to accurately replicate g L
curves from serial direct solves with Newton method I
> Sensitive to settings for tolerances, forcing term, etc.. I
013 Frequency-Energy Plot "
. — Directk = [0.1] | . Displacement Mag., m
——Directk = [0,1,2,3] )\ e
0.125 = = =Precond. GMRES k= [0 1] E 4i491e-05i
* 2.245e-05
0.000e+00
0.12 ¢
0.115 | +—, Example: Snapshot of contact
status (red — in contact) for NNM 2
0.1+t
\ I g
nitial energy from
0.105 . | preload

Contact Status

274 275 276 277 278 279 280
1,000e+00

¥ 1 + ¥
Frequency, Hz b 7 500e-01
5.000e-01 5.000e-01
M 2.500e-01 a 2.500e-01
0.000e+00 0.000e+00

Contact Status

I T .



16 I Nonlinear Pylon Example Fixed boundary conditions

Full-order finite element model exported to Matlab
670K DOF (~202K elements)
Uniaxial penalty springs (gap behavior but no slip or
stick)

> Assumed 1 harmonic in solution kw with k = [1]

Contact edges
(node-to-node)




17 1 NNM 1 of Nonlinear Pylon

First mode associated with pylon swinging
Direct solve for Newton approach prohibitive for this example

Stiffening effect once thin strip impacts the contact block
o Linear frequency starts at 7.54 Hz

Frequency-Energy Plot

10" ¢

— Preconditioned GMRES

7 8 9 10 11
F'requency, Hz




18 I Conclusions

Developed a multi-harmonic balance solver to compute periodic orbits (i.e.
NNMSs) of potentially large-scale models

Preconditioned GMRES + inexact Newton updates allow for parallel
computations of matrix inversions

o Potential for significant computational speedups for large models with many
harmonics

Examples reveal accuracy of preconditioned GMRES compared to
traditional Newton corrections with direct solvers

Future work seeks to combine algorithm with domain decomposition
methods to further speed up inverse calculations of the FEM



19 I Any Questions?

Contact information
- Robert Kuether, rikueth@sandia.gov
- Andrew Steyer, asteyer@sandia.gov

Frequency-Energy Plot

wdlirioned GMRES |
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