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2 I All Models are Wrong, Some are Useful

-George Box

Modeling real-world phenomena to any degree of accuracy is a challenge that the scientific research
community has navigated since its foundation.

Historically researchers have utilized and continue to utilize:

Verification: Are we solving the equations correctly?
Validation: Are we solving the correct equations?
Uncertainty Quantification:
* What uncertainty is attributed to inherent random behavior (i.e. aleatory)?
* What uncertainty is attributed to the fact that we don’t know (i.e. epistemic)?

System Identification: Statistical methods to build mathematical models of dynamical systems from measured
data.

Today:

Scientific Machine Learning: Area of machine learning focused on the use of machine learned models
used in lieu of, complementary to, or as surrogates for computational simulation models used for
science and engineering.




3 ‘ Epidemiology

The study of the distribution and determinants of health-related states or events in specified populations, and the
application of this study to the control of health problems [1]

Nomenclature:

Basic Reproduction Number, R,, “R-naught”
The expected number of infections from one infected individual introduced into a population of 100% susceptible
individuals.

Replacement Number, R.«(t), “R-effective”
After the early stages of an epidemic has passed, the number of secondary infections is expected to go down as the
number of susceptible individuals goes down.

Virus
Pathology

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Viruses are named based on their genetic structure to facilitate the development of diagnostic tests, vaccines and
medicines.

Disease
Epidemiology
COronaVlrus Disease, 2019 (COVID-19)

Diseases are named to enable discussion on disease prevent, spread, transmissibility, severity and treatment.

For more details, please reference the CDC’s Introduction to Epidemiology: https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section.html# ref1



https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html#_ref1

4 ‘ Compartmental Models for Infectious Disease [2]
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5 ‘ Case Counts for Covid-19 in United States

€ ”.,
We know the classic SIR model is under-representative of the real . Alﬁomggﬁi Sabrfh::iroczlg '

-world phenomenon it is intended to simulate. «  Uniform mixing of the population.

* Lacks influence on disease
transmission from interventions.
* Quarantine
* Social Distancing
» Personal Protective Equipment

New reported cases (PPE)

MNew
cases —

“Some are useful”:
* During an emergent pandemic, we do
NOT have the details to build
heterogeneous models.
Tday * Model calibration may provide insight
| into the baseline parameters.
* These are the baseline dynamics that
have been used for decades in all

infectious disease models.
Image Credit: NYT https://www.nytimes.com/interactive/2021/us/covid-cases.html [accessed 2021/07/12]



https://www.nytimes.com/interactive/2021/us/covid-cases.html

Scientific Machine Learning (SciML)

Area of machine learning focused on the use of machine learned models used in lieu of,
complementary to, or as surrogates for computational simulation models used for science and

anaineering
~J ~J

Universal Differential Equations (UDEs) [[3][4]]
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Physics-Informed Neural Networks (PINNS) [5]

Neural Ordinary Differential Equations (ODEs) [6]

Data-driven solutions to Partial Differential Equations (PDEs)
us + Nlul] = x€ENQcR™te]|0,T]

where u(t, x) denotes the latent (hidden) solution,
N[:] is a nonlinear differential operator

Then.... u(t,x) = NN

Meural ODE prediction and forecasting: SIRHD data

Simulating unknown dynamics for a full |
System of ODEs:

du(t)
——=NN(U)

where U = [S, 1, R]




7 I Universal Differential Equations (UDEs) [7] jl.ll a

UDEs are part of the SciML libraries written in Julia: https://sciml.ai
Julia is a high-level high-performance parallel computing language: https://julialang.org

Efficient Training of Universal Differential Equations via Differentiable Programming

Given discrete data points: (t;, d;) where
* t; € [ty t1] are discrete points along the time horizon and
» d; are the corresponding realizations representing the state solutions (e.g. S(t),I(t), R(t)).

Objective: minimize the cost function, €(8), on the current approximation to the solution, ul/1(t),
to the dynamical system, Z—l: = F(u,t, NNg(u,1)).

cO) =) [ulle) - i

“Differentiable programming framework with reverse-mode accumulation is used to allow for
deriving on-the-fly approximation for the wide range of differential equation types.”

Using pullbacks:
Given a function f(x) = y the pullback at x is the function:
Bf(y)=y"f'(x)
then, the pullback of a cost function computes the gradient.


https://sciml.ai
https://julialang.org
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Assessing the Effects of Quarantine Control in COVID-19

Spread [4]

UDEs are a useful and valuable tool to
learn what we don’t already know!!

It can provide invaluable insight during
an emergent pandemic.

Learning the effect of quarantine around the world:
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o I UDEs for Compartment Models of Infectious Disease [4]

Dandekar et. al. used UDEs to represent isolation dynamics for COVID-19.

O __BIO ¢ s

dt Npor

di(t) _ pI()
dt Ny,

S(t) —yI(t) — QOI(t) .

dr(t)
—= = (1) - 8T(®) .

RO _ s1e) + o7
—===81(8) + 6T(®)

Introduced an isolation state T'(t).

UDE for the nonlinear transition
rate from I(t) into T(t),
denoted Q(t).

Q(t) is approximated with a small
neural network trained on data for
I(t) & R(t), denoted NNy (u,t).

By definition constrained to
conserve population,

ANyop _

dt

Loss Function:

Lun(8,8,7.8) = |log(1(£)) — log(gaca )| + [[l0g(R(®)) — log(Raata(®))||”
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10 ‘ Universal Approximation Theorem

Universal Approximation Theorem [[8],[9],[10]]:

(one version) Fix a continuous function o: R - R (activation function) and
positive integers d, D. The function ¢ is not a polynomial if and only if, for
every continuous function f: R¢ - RP (target function), every compact set K of
R4, and every £ > 0 there exists a continuous function f.: R¢ — R? (the layer

output) with representation
fe=WzeaW;

where W,, W, are composable affine maps and o denotes component-wise
composition, such that the approximation is bounded

sup ||f(x) = fe(x) || <€
xeK

Densely connecty
f 1“ 'I'Ill"rlll.ll'\' III"II IIfll

Although the Universal Approximation Theorem is necessary condition for neural
networks to be universal approximators, it is not a sufficient condition in practice.

How do we know we are learning something useful?!?




11 ‘ Inferring Transition into Quarantine with Incomplete Data

* There are many applications for which only a subset of the state variables can be observed.

‘ How does this affect the ability to recover “useful” information about Q(t) & disease dynamics?!? |

Experimental Plan

» Dandekar et. al. used observations of I(t), R(t) to infer transition rates (including Q(t)) for COVID-19. i
i

1. Generate synthetic data with prespecified NNgy-.
2. Infer NN & transition rate parameters 3,7, 6 from combinatorial subsets of state variable |
observations.
a. Data=[I,R,T),[I,R],[I,T],[R,T), [I],[R],[T]
3. Study mean-squared error (MSE) of inferred Q(t) vs “true” Q*(t) used to generate data for each

dataset to determine when inference degrades.



2 I Problem Specification/State of Knowledge

Assumptions:
* NN, fully-connected neural network of depth 1, width 10, and a

RelLU activation functions.

B o e e e o

* NN,y architecture the same for data generation & inference.

» Synthetic data not corrupted by noise.

Output

* |nitial condition assumed known for state variables I(t) A
— Q1)
_/

5(0),1(0),T(0), and R(0).

 All transition rate parameters f3,y, and § uncertain; distributions

derived from literature.

» Neural network parameters, @ and ODE parameters, £,y,and

Densely connected
{Al connections nol shown)



i3 | Ensemble Training: Robust Learning and Uncertainty

Quantification
Approach

For each of the 7 possible observable state combinations: {[I,R,T|,[I,R],[I,T|,[R,T),|I],|R],|T]}

1. Run 100 training replicates to learn {NNZ}, {$*}, {#*}, and {8*}, for k = 1, ..., 100.
a. Each parameter is randomly initialized at the beginning of training.
b. Due to the vanishing gradient problem:
i. Filter out outlier ensemble members (those with very large MSE).
2. This will result in n < 100 realizations for optimal transition rate parameters and
approximations for Q(t)

R . . . .25 4 Filtered samples
Uncertainty Quantification Opportunity 025 ' y

Outlier samples
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The ensembles provides an estimate on the variance for:
* Unobserved state variable trajectories.
* Optimized transition rate parameters.
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14 | Training Results: Observable States = [I,R, T |
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15 ‘ Training Results, Observable States = [R]
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16 I Ranking Q Recovery by Subset of Observable States

 Computed MSE of ensemble-mean (average) Q(t) vs “true” Q*(t) used to generate the data.

* Ranked data scenarios by MSE.

1072
102
101
10—5é

1076 -

Average Q Mean-Squared Error

Why is this the
worst case?!?

4=
R & > & &

Populations included in training



17 ‘ Training Results, Observable States = [R, T]
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18 I Conclusions & Future Work

0.5

* Developed a procedure to study success of UDE training == Data; Infected

I Data: Recovered

when only able to observe subsets of state variables. — Triing; fecea
0.4 HH —— Training: vere
—— Forecast

* Ensemble of training results provides understanding of
uncertainty in inferred dynamics. 031
* Next steps:
o Noisy and/or sparse data
o Data generated from more complex model o1}

02}

0.0

1:" 2ICI 40 EID 80
» For more complex model must determine appropriate accuracy metric (no “true Q” to compare to).

» Potential metric: MSE of observed state variables extrapolated beyond time horizon of training data.
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23 | |nitial sampling of transition rate params

* Transition rate parameters are interdependent.
* Instead randomly sample independent variables and computed derived transition rates.

* For SIRHDT model, e.g., hospitalized population H can flow into R or D.

* Tyr, Typ can be defined in terms of
° Tyr, Typ ratios of populations flowing into H and D
° Ty - residence time in hospitalized population

* Then

S THR S THD
HR = 7 s HD = 7
Ty Ty

* Reasonable ranges to sample 7;, T, derived from the literature and used to define distributions from which
they are sampled for initial guesses to optimization.
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I Fraction of population

Filtering procedure

* Computed MSE for each ensemble membert, each population in the data.

* Filtered out any ensemble member whose MSE was deemed an outlier using the interquartile range

(IQR) heuristic threshold:

where Q1= 0.25 quantile, Q3=0.75 quantile.
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