

WIP Presentation

Modeling of Natural Gas Networks for Consequence Analysis

Kevin Stamber, Sandia National Laboratories

Walt Beyeler, Sandia National Laboratories

Andjelka Kelic, Sandia National Laboratories

Robert Taylor, Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2021-xxxxP.

0:00-0:30

@S_D_Society

#isdc2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Virtually everywhere!

THE 39TH INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Problem Statement

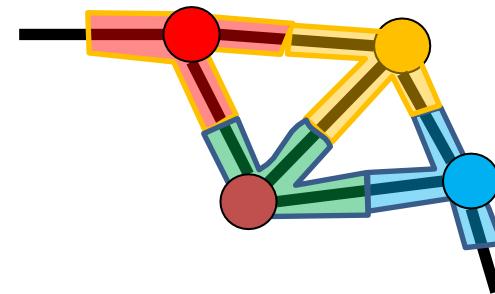
- What are the consequences of a disruption to one or more components of a natural gas infrastructure network?
 - Examples
 - Victoria AU, September 1998
 - New Mexico & Arizona, February 2011
 - Texas, February 2021
 - Concerns
 - Integrated (multi-organizational) networks with contractual requirements for delivery
 - Different classes of consumers that depend on that network, with defined priorities for delivery
 - Duration and magnitude
 - Hopes
 - Multi-organizational structure can create opportunities to reduce impact

Approach

- Leverage the processes employed by Corbet et al, 2018* for petroleum infrastructure
 - Develop a reduced-form network relative to the entire natural gas network
 - Nodes with a potential s_i (injection rate q_{si} , demand rate d_i)
 - Edges with a capacity c_{ij}
 - Satisfy demand subject to mass balance and capacity constraints $q_{ij} = c_{ij} f((s_i - s_j)u_{ij})$ (1)
 - Flow rates given by $f(x) \equiv 1 - e^{-x}$ (2)
where u_{ij} is a utilization parameter and
 - In equilibrium, net flow at each node i is 0: $\sum_j q_{ji} + q_{si} - d_i = 0 \quad \forall i$ (3)
 - The equilibrium solution is obtained by solving equations (1) – (3).
- Treat nodal storage as variation in line pack of compressible gas in connected

*Corbet, TF, W Beyeler, ML Wilson, and TP Flanagan (2018). A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure. Reliability Engineering & System Safety 169: 451-465.

Approach


- Transient case: Net inflow into a node results in accumulation of stored fluid:

$$\sum_j q_{ji} + q_{si} - d_i = \frac{dv_i}{dt}$$

$$= \frac{v_i^T p}{2b} \left[\frac{1}{2} \left\{ 1 + \frac{(\frac{s-a}{b})}{\left[1 + (\frac{s-a}{b})^2 \right]^{\frac{1}{2}}} \right\} \right]^{p-1} \left[1 + (\frac{s-a}{b})^2 \right]^{-3/2} \frac{ds_i}{dt} \quad \forall i$$

(where p , a , and b are storage parameters

- Responsiveness and customer utilization parameters allow examination of a range of operator responses
- But gas is compressible!
 - Treat nodal storage as variation in line pack of compressible gas in connected pipelines

Progress, Insights & Questions

- Applied to the February 2011 “Big Chill” case
 - Modeled using data from multiple sources (FERC Form 567, FERC/NERC Report, NMPRC report) – primarily EPNG network impacted
 - Balanced to FERC Form 567 coincident day data
 - Receipt and delivery information on a single day at all points on the network used to ensure network structure was correct and model reproduced that result
 - Analyzed to compare results at demand points downstream of disruption in TX

NetFlow Dynamics Natural Gas Network for TX/NM/AZ

- Thoughts, feedback and questions welcome

3:30-5:00